PLAINTIFF'S
EXHIBIT

501

Comes v, Microsoft

Microsoft Word For OS/2
Development Postmortem

Richard A. Saada
January 2, 1991

What We Did Right:

Providing Support for 0S/2 specific issues

PM Graphics Formats (Metafiles/DIBs)
We added support to PM Word for both PM Metafiles and Device Independeat Bitmaps (DIBs).
While WinWord had support for Windows metafiles, PM Word supports both the Windows and
PM formats. DIB support was also added, since this is the only bitmap format available under
PM. This included support for bitmaps > 64K, not available in WinWord 1.0.

Task Switching
The WinWord code was mainly designed for Windows 2.x, and so was lacking code to correctly
support Ctrl-Esc task switching. This code was added for the PM Version, and many problems
with Alt-Tab and Alt-Esc task switching were fixed as well. There are still problems with the
code due to differences between the Windows and PM models, but PM Word is a much better
behaved app in a multitasking environment that WinWord is.

HPES
We provided adequate support for HPFS partitions within PM Word. The original OPUS code
was very tied 10 the DOS filename specification. We succeeded in tracking all the places that
needed modification to allow support of pathnames that were > 64 characters, and filenames that
were not 83 in form. We were limited in what we could support by the necessity to keep the
length of the full filename and pathname strings in a byte. In addition, the filename code was too
distributed 1o allow UNC support. Changing either of these would have required 2 major redesign
of the code, and was deemed 0o costly for version 1.1, Never the less, the support provided is a
vast improvement over what is available under DOS.

Extended Attribute Support
We provided basic support for EA's under PM. In addition to the TYPE EA, which most apps
support, we also store all our document summary information in the EAs for each document. The
File Find function uses the EA's if they are available, rather than opening each file and parsing the
docunient structure to find the internal copy. Maintaining them in EA's also allows for an external
app to do searches on PM Ward documents via the EA’s, without knowledge of our intemal file
format. To protect against EA loss on DOS systems, an intemal copy of the summary information
is still maintained.

Solving Fractional Character Width Problems

There is a major difference in the PM and Windows models that cansed us a large amount of grief,

Under Windows, the API to get chamcter widths retams integers in device units. If a device has

linearly scaled fonts (such as the Postscript printer), the fractional values are transformed into integers

before being returned 1o the app. The device drivers thea uses these same integer values for output, so

that the App can predict where text will fall. Under the PM model, the APT also retarns character

widths in integer device units, The device drivers, however, go ahead and use the fractional

information in outputting the txt. This makes justifying text with the WinWord code impossible. We

ran into this problem initiaily with the Postscript driver. After much discussion (some of it rather

heated), we were able to convince the systems group to provide the escape required o make the

Postseript driver use the integer widths returned to the app. We were aided in this by the fact that any

other Porthole SMK or BCL, app that used the Postscript printer would expect this behavior,

Then 1.3, with ATM (Adobe Type Manager), appeared on the horizon. This reopened the issue on a

global basis, since the ATM outline fonts also had fractional character widths, and were available both

on screen and for most printers. The testers did some preliminary work with ATM, and it quickly

became apparent that our current behavior was unacceptable. Our justification was ragged, double

X 584369
CONFIDENTIAL

underline and strikethrough were misaligned, and there were blank gaps between runs of characters,
To fix this, we needed to make PM Word understand fractional character widths. This was a two part
problem. First, we had to find a way to get the fractional widths from the system, since the APIs
provided only return integers. Second, we had to modify the FormatLine code of Word to use the
fractional information, preferably changing as little as possible. This was a high pressure problem that
we had 1o fix in short order.

The first part was the hardest to accomplish. Paul Klinger of the Porthole group and Greg Hitcheock
of the PM group were very helpful in getting around the API limitations, The final solutions was for
us to get the character widths of a font whose height was the size of the digitizing grid used in creating
the font. This would retrn the designed widths as integers with no error, We could then scale these
widths to the desired point size, maintaining more accuracy than we could get from the system. The
second part was actually fairly casy. We decided to port some code over from Mac Word, which
already handled fractional widths, and this went it smoothly. In the end, we managed to get the code
in and working in two weeks, with very few bugs.

Providing our own Porthole Support
As will be discussed later on in this document, part way through the project we lost mast of our
external support for the Porthole libraries. As a result, the PM Word team became responsibie for
tracking and fixing bugs in the Porthole libraries ourselves. We succeeded in leaming the code in a
short amount of time, and managed to successfully fix the bugs that arose in the last four months of
the project.

Tracking OS/2 Problems
As will be discussed later on in this document, OS/2 has not beea a stable platform to develop for. A
large part of our time during the last 6 months of the project was spent chasing bugs in the system.
The development team did a good job in tracking bugs into the system, and at the very least
dcnufymg the component causing the problem. In many cases we were able to provide the line of
code causing the bug and a suggested {ix with the bug report. Given the size and complexity of the
0872 code, this was a major achicvement.

Internal Picture Handling

A large chunk of the intemal picture code was redesigned and improved for PM Word. The highlights

of this were:

Bitmap Cache
We wrote a set of functions (0 cache metafiles into bitmaps, to increase the speed of our picture
display. Since all but the simplest metafiles take longer to dispiay that a bitblt to the screen, this is
a clear and substantial win. During typing, a picturc on the same line is shown as just the frame.
As soon as typing stops, however, the picture is immediately restored. This code has also been
back-ported to windows for the 1.1A release of WinWord.

Render To Clipboard
Import field metafiles, derived from graphics converters, could not be rendered to the clipboard or
DDE under WinWord. If you did a copy, no other app could paste them. This was because the
metafiles did not contain enough information to be dispiayed on their own; additional information
that we stored in gur internal picture structure was required. We changed the insertion process for
PM Word so that the internal information was used to build new metafile records on the fly,
which were inserted into the metafile, Since the resulting metafile could stand on its own, we
were able to make it available to the clipboard and DDE.

Hand Building Metafiles
We developed methods to build Windows metafiles by hand. This allowed us 1o make DIBs from
PM Word displayable in WinWord. By building 2 Windows metafile around a DIB bitbit record,
we allow WinWord to use the Win 3 metafile code to display the DIB, even though WinWord has
no DIB code itself.

What We Did Wrong (or could have done er):
Simple Port Philosophy versus a Real Project.

5843
CONFIDENTI72L

From the start this was an Ad Hoc project. Many of the normal procedures and processes, such as

consistent Program Management, realistic scheduling and milestones, and sufficient resources, were

missing, 50 it ended up being run oa a "Management by Crises” methodology.

Changing expectations about the amount of work required.
1 don't think anyone had any concept of how much work would eventually be involved in pulling
this project together, When we first decided to do this project, it was originally planned to be a
true port of WinWord to 0S/2. Before work actually began, however, the decision was made
use the WinWord sources via Porthole. Whether or not this was a good decision is open to
debate. Had the system and the Porthole libraries been stable and complete, then it would have
been a definite win, As it was, it took us approximately 17 months of work to complete the
project (calculating SDE months is difficult due to the constant changes in personnel and their
time commitment to the project). Given the state of the OS, I don't think a true PM Port could
have been done in that time. It would have required extensive changes to the WinWord sources,
which were the only stable part of this project.
Once the decision was made to use Porthole, however, the nature of the project changed
completely. Rather than doing most of the work ourselves, we would only be responsible for
making the OS/2 enhancemeats to the WinWord code. For making the Windows code we wrote
or inherited run on 0S/2, we were entirely dependeat on the Porthole Group. If they did their job
as promised, our task looked to be fairly straightforward and the project would be speedily
completed. This tumed out to be a very big if, as the task they had set out to do became more and
more difficult the longer they looked at it.
The Development team ended up spending a lot of time being testers for the Porthole group. Later
in the project, we had to assume development respoasibility for our version of the Porthole layer
as well, and this increased the workload. In addition, the changing requirements for what builds
of the OS we had to support 100k their toll. Just as 1.21 finally began to stabilize, 1.3 appeared on
the horizon. Despite the best efforts of the systems group to kill it, it began to look like it would
be the dominant OS/2 in the marketplace, and thus essential for us to support. Once again we had
to reevaluate the amount of work we had to do.

Lack of Program Management
Early on in the project, Komel Marton was officially responsible for PM Word. Other
responsibilities, such as WinWord 1.1, and later WinWord 2.0, made it difficuit for him to give
PM Word the attention it really needed. The last part of the project was managed by Chase
Franklin. For the most pan this provided much more consistent guidance, but he was also pulled
off o work on other projects, such as the WinWord working model.

Scheduling
This was a mess. Because of the "quick port™ philosophy, we didn't have a real schedule for most
of the implementation phase. Quick estimates from the developers were sent around via email,
but a real task list using the Excel scheduling macros wasn't done, since it didn't seem necessary.
Towards the end of the implementation phase, CBT put its foot down and demanded one, We
thea did a schedule for the remaining tasks we knew about at that time, and used it until we were
“code complete” in February. At this point we abandoned using the schedule, since we expected
1o be just doing bug fixes from then onwards,

Code Complete Milestone was Bogus.
We declared ourselves Code Complete in February of 1990. At this point, all the OS/2 specific
changes we knew about were done. This tumed out to be a completely bogus claim. Huge
amounts of work were done after we were supposedly code complete. This happened largely
because there was a continuous stream of unexpected problems that arose between then and ship.
These included:

Switching from CP 850 back to ANSI

Modifying Format Line w0 handle fractional character widths

Most of the PM Metafile code

Graphics converter code

Bitmap Cache

DIB support in porthole

International keyboard support in porthole

Font mapper changes in porthole.

PNALD W

X 584371
CONFIDENTIAL

and more. Even the bitmap for the About Box didn't appear until about two months before we
shipped, and this became a running joke in our leads meetings. 1 don't really know if we could
have completely solved this problem. Cermainly some of the above, such as items 3 and 4, should
have been scheduled. Items 2, and 6-8 were problems we had to fix as we discovered them, and §
was a major optimization we decided to do fairly late in the game, In any case, a more careful
analysis of the possible problems would have been beneficial in producing a more complete
schedule of tasks for the implementation phase.

ANSI/CP850 Switch

WinWord, being a Windows app, runs in ANSL Eady on we decided we wanted to be a Code Page
850 app, as we were running in the PM eavironment. This turmed out to be a mistake, First, it required
ustomnallW‘mWoxddocmncmswewmwthmughanANSX/C?ﬁOoommwhenwcopawd
them, It also caused problems with support of publishing characters (which don't exist in CP850), and
with sorting International characters. We decided at last to go back o ANSL This meant we could
read WinWord documents much easier, but that text imported from the clipboard would be transiated,
Unformnately, OS/2 is very inconsistent in its support of ANSI (CP 1004). Many base functions (such
as for getting sort tables) fail for ANSI, and some parts of the system (such as the FontEdit utility)
waon't accept 1004 as a valid Code Page. The most blatant case is the IBM 4019 laser printer, which is
appamdyhardmmmmicwdmCPBSO.Wemﬁnanyfmwdtodmpsuppatfordl.isprimu
(except via Postscript Emulation Mode) because of this. Despite these problems, I believe going with
ANSI was the right decision. If we had done more research into how hard it would be 1o switch 1o
CP850 we might have just stuck with ANSI and saved ourselves some headaches.

PM Metafile Handling Redesigns
The Porthole group redesigned how a Windows app would have access to PM Metafiles several times.
Each time we were required to rewrite our code to accommodate the new design, We would have to
find all its bugs, and then we'd find some problem that forced them to redo it again. This should
probably have been thought out better by both sides, and we should have taken a more active role in
designing how this worked.

Fractional Character Width Problems

While we did a very good job of hardling this problem once we had toa, we should have ideatified it
sooner. Fractional Widths fonts were actually available under 1.21 as well, in the form of Engine
Outline fonts. While these were ugly ‘enough that they were rarely used, they did exist. The early
problems with the Postscript driver also pointed out this problem, but we opted for the easy solution
of geaing the driver 10 emulats the Windows model. We knew at that time that we were likely t0 have
problems with future drivers (such as the PCL 5 driver), but we thought it was t00 late in the project to
try and do the real fix. As it tumed out, ATM on OS/2 1.3 forced us to change our minds on this.
Thueisalsosomequwionot'whethathcmludonwechosewasacnmllythcbcstme.\vc
discovered later (the week before we shipped), that we might have been able 10 solve the problem
without really handling the fractional widths, The real issue at hand was not that the fonts had
ﬁacﬁonalwidﬂu,bmthauhedﬁverwasnmdoingwhmwepmdiaedinomhyommdaWeused
iuwgawiddmwfmmagdwsyswmusedﬁacﬁonalwidﬂumdotheoumu;ﬁismﬁhawbem
fixed in two ways, either by making our layout code correctly predict the system'’s behavior, or by
forcing the system to behave the way we predicted. We chose o fix out layout code, which while it
may have been the "right thing” 10 do, was not the easiest salution. The ExtTextOut APl does provide
for the application to specify the width of every character in the string at output time. We could, I
believe, have modiﬁedourcodempaslhcmwgawidthswemmdthesystemwuseoncvay
output call, 'and thus forced it to match our layout. This would have required us o verified that every
output call in the program correctly passed widths (there are places that don't), and would have
resulted in different output. It would probably have been easier 10 implement, however. We didnt
bother to explore this fully, since we had already solved the problem the other way.

Graphics Converters
There were several problems with our puiling together graphics converters for PM Word, The first is
that we didn't get started on sorting out what we were going to do until far too late in the project. We
should have had a plan as to where we going to get them from far earlier, and gotten the ball rolling,

X 584372
CONFIDENTIAL

As a result, we didn't have ANY working coaverters until the very end of the project, the last moath or
two before ship. This, of course made it very hard 10 test our converter interface.

The interface itself was another issue. Our Windows converter interface is based on the Aldus
converter specification, so that we can share their graphics converters, For a long time we
misunderstood what Aldus intended to do under PM, and this resulted in a lot of confusion on our
part. The confusion was compounded by the general lack of knowledge about how PM Metafiles
really worked, both in our group and in systems. When we finally found out what Aldus really
intended, we decided on just modifying the Windows interface 1o make it PM compatible, but we
ended up going through several iterations before we finally achieved a workable specification we
could give to the contractors doing the converters.

Trying to support UNC paths

Early on in the project the decision was made to not try and support UNC paths, becanse it would be
100 costly 10 implement. Part way through last summer, it was discovered that WinWord did partially
support them, and that some code added for PM was blocking it. I let myself be convinced that we
should try and add real support for UNC, even though it was late in the project. This shoald not even
have been attempted. As [had originally thought, too many places in the code were affected, and it
broke the file system model in to0 many ways. After one release with lots of bugs, we pulled the
feature and removed the code.

Setup Release Problems
There were a lot of problems discovered after we started building release disks that should have been
found far earlier. The release mechanism for setup was also pretty ad hoc, which made life difficult
for the testers wying to do quality assurance on our release disks. The problems we found right at the
end were:

Tech Reference not being converted
The Tech Refcrence document that ships with the product was found to be the unmodified
Windows version three days before we shipped. This file just fell through the cracks, and no one
noticed until the end.
Clipboard
The Clipboard applet we shipped 10 provide missing system functionality could have been
cleaned up with some work. It didn't have any accelerators and the intemal code needed some
work. This was a low priority. picce, but just adding accelerators would have been an
improvement. Several people didn't realize we actually planned to ship this, so it never got done,
Prev.fon weight problem
The preview font that we had on the disks was found to not match what some of the testers were
using. The weight class of the font had beea modified 1o match the OS/2 Standard (500) rather
than the Windows Standard (400), and this hadn't been completely propagated.
Downloadable Symbol Font problems.
There was confusion until right at the end about whether we would include the downloadable
laserjet symbol font that WinWord shipped with PM Word. As a result, they never got tested.
When we did try them, the week before shipping, they tumed out to have several problems. We
solved the caes we could, and filed PTR's for the problems in the driver.
These should all have been handled months earlier, however, and would have besn if we had started
building disk sets earlier. Even though it is known that the disk sets will change and be rearranged, it
is good to put a first pass at them together early on so everyone is clear just what we are planning on
shipping. -

International Problems ' .
Division of responsibility between International and US with respect 1o who would do work for the
international versions was unclear. How much of this work had to be done for the US version was also
unclear early on. Whether some of this work could be done by intemational, or could be done afier we
shipped US, was something we didn't figure out uatil fairly iate. For WinWord, international had a
developer working in our building doing coding for their problems. This didn't happen for PM Word,
50 we ended up doing unexpected work for them, This hit several areas:

Keyboard Issues

X 584373
CONFIDENTIAL

Support for fareign keyboards was broken in Porthole. The code that we had worked only for US
keyboards, and the systzms team had no intention to fix it in dme for our ship date. With a lot of
yelling we were able to get some help from them, but for the most part we had to fix this
ourselves.

Who would fix international accelerators that were broken in WinWord, and others that were
broken in PM Word? Some of the WinWord code made assumptions about the positioning of
certain glyphs, '* for example was assumed to be Shift '8, On some keyboard this is not true, and
thus the accelerator keys were wrong. This was broken in WinWord as well.

Conversions
We had a lefitover WinWord bug that was discovered for PM Word: We were missing a call to
AnsiToOem during our file conversion process. This caused any docoment with an upper 128
character to not be convertible. Who was responsible for testing this?
Thesaurus
International uses a different thesaurus than the US versica. Who was responsible for porting this
to OS/27 I fecl they should have had a developer o do it, but we ended up doing it for them.
We realize, of course, that international is a major section of our business. This is especially true for
PM Word, since OS/2 has a much higher acceptance in Europe than here. Just how muoch work the US
development team has 10 do for International, however, is something I feel needs to be looked at more
closcly.’melmmmﬁoualwamsavcryaggmssivegoalsastohowsoonafu US they wanted to ship
various versions. On the other hand, they dida't provide much in the way of development support for
solving issues that arose. If the US team is going to be respousible for this, then we need to know to
plan on the extra workload. Time for solving their difficulties can be scheduled in if it is planned in
advance, but then management needs to agree to the hit on the US date 1o bring in the Foreign dates.

Things we had to deal with:

08/2:

General Instability
The perils of developing for 2 moving platform took their til. Bath development and testing
spent days upgrading to current builds of the OS, many of which were actally less stable than
their predecessors. .

1.21 (Stoop) A
We actually had demoable code for Comdex in Fall of 1989, At that point, IBM had been
shipping 1.2 build 127 for several months, but we required the current 156 build w0 run
successfully. We knew we had 1o wait for the MS version of 1.2 (o ship, since the IBM version
had too many blocking bugs for us to support. According to Systems, 1.2 was to ship by the end
of the year, and we planned to ship in February of 1990. Despite build 164 being declared
*Golden" at the end of the year, it wasn't uatil Summer that 1.21 build 187 finally shipped. Even
then, the printer drivers that went out with 1.21 were so riddled with bugs that we knew we
couldn't support them. The systems group promised that they would do a driver update in the fall
with drivers that fixed all our ship issue bugs, but that still has not happened.

1.3 (Cutter)
The main reason it hasa't happened is the appearance of 0S/2 1.3. We had finally managed to get
a stable platform to work from (build 187), and were just updating printer drivers, when we
started hearing rumors about 1.3. For weeks, the systems group told us that 1.3 would not be an
issue, and that it would be killed. Unfortunately, that didn't happen, and we were stuck with
deciding on whether to support 13 or not, For a long time we didn't think 1.3 would be an
important platform, since IBM wasn't going to do an EE version, and not many major accounts
would run the SE. Then, we were told: Yes, IBM was doing EE, and they planned on updating ail
their accounts 10 1.3. This made it an essential platform to support. Since IBM was the only
OEM shipping OS/2, 1.3 would be our entire market until the rest of the players in the computer
industry caught up. Once MS decided it was going to OFEM 1.3, it became our target 0OS, even
though we still claim o support 1.21 (if you can get the latest drivers from the driver update that
hasn't happened yet).

X 584374
CONFIDENTIAL

Supporting 1.3 was a major hassle. The carly builds we got were not very stabie, despite the
claims that they had picked up all the MS 121 bug fixes. We were once again developing on a
moving platform, and 1.3 also brought with it the problems of ATM. In addition, since all the
development of 1.3 was being done down at Boca, we had a very difficult time getting resolutions
10 our problems. We cventually ended up getting Mike Maples to call his contacts down there so
we could get a response.

2.0 (Cruiser)

Support for 0S/2 2.0 was an ongoing issue. Every few wecks we'd get harassed by the systems
group about why weren't trying to support OS/2 2.0 . Realistically, we were having a hard enough
time supporting the buggy operating systems that were aiready shipping, without worrying about
a buggy and unstable OS that wouldn't ship until 9-12 months after we did. I still feel this was the
correct decision. If we need 10 rev our Porthole Dlis after Cruiser ships, we can do that, At that
point we'll have a clear idea of what it required. The chance that 2.0 would break something else
after we shipped made it not worth the effort 10 try and support their current code. At this point,
it's still not clear when or if Ceuiser will ever ship.

08S/2 Politics
The politics involved with developing for OS/2 were distracting and often obstructing. At various
points in the project, we had 10 decide whether to support 1.2 or not (or whether just a certain
CSD), 1.3 or not (and with or without ATM), and 2.0 or not. The legal wrangling over ATM
caused us 0 get crippled versions of 1.3 for a month, during the critical time we were trying ©0
support it. Not only did these versions have ATM removed, they were also missing the 1.21
oudline fonts, which caused the system (o run incorrectly.

Printing
Printing was by far the worst part of our problems with OS/2. This is covered more completely in
the Testing Postmortem, but ['ll summarize it here, From the beginning, the drivers were
unbelievably buggy and unsigble. This was a known problem when IBM shipped 1.2, and as a
result no one could print from PM. PM Word pushed the drivers harder than any currendy
shipping app, yet despite this the OS/2 group refused for months o include us as part of their test
plan and ship criteria. 1.21 build 187 shipped with drivers we knew had ship issue bugs for us, but
we were told they would be fixed in a driver update in the fall. This still hasn't happened. Of the
available drivers, only the latest Postscript and Laserjet drivers are currently usable, and even
these have problems. For mast of the project, the mechanisms were not really in place for us w0
report problems to the systems group and get resolutions. We often had to result 10 emailing or
calling the devclopers responsible directly, which produced inconsistent resuits. For a long time,
no one over in systems secmed w want w admit that printing was a fiasco and accept
responsibility. Naturally this made getting anything fixed much more difficult.

Full PS/Metafile issues :
PM has this bizarre concept of Full and Micro Presentation Spaces. The vast majority of the
system just uses Micro PS's, but there are some things that they can't do. The most imponant of
these is metafiles. There arc some metafiles that cannot be displayed in a Micro PS.
Unforunately, there is no way to tell by looking at one if it will have this problem. Because most
Windows apps wouldn't be able to handle PM metafiles, the Porthole code was designed around
the use of Micro PS. Unfortunately, this meant that there was a large class of PM metafiles that
PM Word was unable to display. We were finally forced t0 go in and rewrite the sections of
Porthole involved 1o always give us Full PS's, despite the speed hit involved. We would have
preferred 10 just request one just when we needed it, but the mechanisms werea't around 0 do
this.

Communications with an unresponsive systems group.

This was an issue in several different areas. The major places where we had problems were with

Printer Drivers (see above), submitting PTRs, and at times response from the Porthole Group. Geuing

the systems group to admit that there were driver bugs that should be fixed, and getting them fixed in

time for us to ship, was an ongoing problem. It took a long time for us to actually get access (o the

PTR system, so we could enter our bugs direcily rather than just scnding email. Once we did get

access this helped the simation a lot, but it should have happened from the start,

X 584375
CONFIDENTIAL

Porthole:

Porthole was such an integral part of this project that problems there often had widespread effects.

These are some of the issues with Porthole that we had o deal with:

PM/Win 3 Incompatibility
As was mentioned earlier, the Porthole team set a impossible goal for itself. It's been said that
while PM and Windows are similar in design, they differ in every implementation detail. This
caused incompatibilities between Win 3 and PM that, while they might not affect a simple applet,
can cause problems for an app as complex as PM Word.

Ini Files
One major area of incompatibility was with the ini files. Under Windows, the app is notified if
events happen in the system that might affect it. Font changes and printer changes are the most
common examples of this. Under PM, this isn't truc. Printers can be installed or changed, and
fonts can be installed or deleted, without the app being notified. In order to try and fix this,
Porthole installed a system hook to monitor messages, and tried to notify us if anyone touched the
ini file. While well intentioned, it had two major flaws. First, we got a lot of spurious INI change
messages, One printer change could geaerate several messages © the app. Since we query the
available fonts on receipt of one of these messages (a very slow process under OS/2), this cansed
major performance problems. Second, PM has this huge flaw in its system hooks. If another
process calls a hook in oue of your dlls, your dll won't exit until every other process that called it
has ended! If something like the spooler calls your app (which is the whole reason you set the
hook it the first place), your dll will never unlink! If the Porthole dlls didn't get unlinked when
PM Word terminated, then the user would be unable (o restart the app until they rebooted the
system. Since this was obviously nnacceptable, we had to remove the hook.

uittin

Quitting was another area that had problems. The messages that were sent to the app when it was
terminated via Shutdown didn't match the Windows sequence. Also, under Windows an app can
stop itself from being closed, while under PM this is not designed in. This caused us several
problems,

Incompleteness
In a lot of ways, the Porthole code was incomplete. Ofien we would track a bug into the layer,
and find out that the code required to handlie the request didn't exist. As an approximation, the
first 50% of the code was done very fast (as can be seen by the fact that we had demoable code at
Comdex in the fall of 1989). The next 30% was slower, and we did the last 20% oursclves as we
discovered what they hada't done. We ended up having to write the clipboard DIB support,
AnsiToOem conversion, and the International Keyboard support ourselves. We atso discovered
areas of the code where ecror checking was non-existant, and had to rewrite that as well.

Support
The Porthole group fluctuated a lot in their responsiveness. Early on, whea the Porthole code was
justbcingpmwgethu'.ﬁwywmmygoodabomgemhgdlingsﬁxed.'ﬂwnanneoflhebngswe
found at that stage made them important for all Porthole apps. After we split sources, Rick Powell
and Rao Remalla were in charge of our version of the code, and they were good about taking care
of issues that affected us. During one of our resource crunches, however, we ran out of bugs for
them to fix. We knew there were more, but Iacked the testing resources to find them. At this
point, Rick and Rao moved onto other projects, and the PM Ward team took over support for our
version of Porthole. After they left, we often had a hard time getting help from the BCL team,
Even though a lot of the problems we found affected all Porthole apps, their priorities often didn't
mesh with ours, Sometimes we were able to get help quickly, but in some cases (like the
international keyboard support), we ended up doing it ourselves, Just where we fit into the
scheme of things left something to be desired.

Lack of Knowledge about 0S/2 in house.
There are huge gaps in the in house knowledge about OS/2. Finding the right person to ask questions
of was difficuit or impossible. With Windows, you can ask intricate questions of the developers and
get an answer. With 0S/2, you often had to send mail to someone you didn't know in Boca Raton,

X 584376
CONFIDENTIAL

Florida or Hursely, England, and if you were lucky you got a reply. Usually it was “I don't know",
“Ask someane else”, or answered a different question than the one you asked. Metafiles were 2 prime
cxample of this. Because of the JDA, the work to design, implement, and test metafiles was done at
IBM Hursely. As a result, no one at MS had any idea how the metafile code really worked, what the
file format was like, or what the limitations were,

Access to the 0S/2 sources was essential.

In general, the OS/2 documentation isn't as good as we'd like. The API descriptions are generaily
okay, but information on how to use them is lacking. Responsiveness about possible bugs was lousy
unless we could prove the bug was in their code, This required debugging through the system, printer
drivers, etc. uatil we could isolate the exact cause of the bug. We spent a lot of time understanding
how the system internals worked so we could find their bugs. This would have been impossible to do
without access to the system sources. On a matire and stable OS, where you can depend on the APTs
10 do what you expect (and the expectations are well understood), I can see how access to the system
sources is unnecessary. With OS/2, I don't see how it would be possible w0 successfully write a major
app without it.

Resource Allocation Problems

This project suffered from resource problems from the very start, It wasa't until after WinWord 1.0
shipped that we started 1o get 2 real development team, but even then the team was constantly in flux
as peopie were pulled onto higher priority projects. While I understand the refative importance of the
projects involved, and agree with the decisions made, it is obvious that these events had a serious
impact 10 both the morale and the schedule of this project. The biggest hit to our team was WinWord
1.1. When the decision was made to do this update, all but two of our testers were pulled off PM
Word to work on it. This had a strong negative impact on the project, including cansing Rick Powell
and Rao Remalla to move onto other projects for lack of work. In addition, I was pulled off to do the
autoswitching 3D visuals for 1.1 . While I was the best person to do the job, having done the 3D
visuals for PM Word, the fact that they pulled the development lead off 10 work on another project
says something aboat the priority placed on PM Word. We also lost Bob Zawalich to the Japanese
Word Processing Project. He was in Japan for several weeks during the summer, and also spend half
his time working far them for the remainder of the project. Phillip Garding was pulled off to work on
the sewp for the Windows Office, a project that dragged on and on for weeks.

Difficulty Determining the True.Source of a Bug
PM Word was by ils nature a very complex app to debug. A large and complicated Windows app,
running through a developing translation layer, on top of a developing OS. Is the bug in the program,
Porthole, or the system? Two of the three were unstable for most of the project. Ouly the Opus code
could be considered at all reliable, and we found a lot of bugs there too.

Conclusions

Word for OS/2 was not the most enjoyable project 1o work on. The team was often frustrated with the
lack of importance placed on the project, and with the platform we had to work with. A large part of
our time was spent putling out fices, arguing with [BM and Systems, and doing a lot of mind numbing
debugging. Oae lesson we leamed is the danger of having 0o strong a dependency on an untested
(and at that point unwritten) component over which we have little or no control. As much work as it
was to maintain the Porthole dlls ourselves, at least then we knew what we were dealing with and
could make intelligent decisions about how much wark was to be done. We did, however, avoid the
Excel trap of shipping a product before the system was in good enough shape 10 support us. The team
motto developed at the end of the project pretty much summarizes our feelings about shipping PM

Word...
.. Against All Odds

X 584377
CONFIDENTIAL

