PLAINTIFF’S

% EXHIBIT
: L1902 4 i
MICROSOFT CONFIDENTIAL Comes v. Microsoft

To: Bill Gates, Mikz Maples, Paul Maritz, Brad Silverberg
From: Jun Allchin
Date: 8/21/92

Subject: Systems: State of the Union (Chicago/Cairo and more)

1. Preface

I feel T bave been lax in pot articulating in a better way the. problems that I think we're facing. I do pot bave the
answers o all these problems, but we can salve them if we understand the big picture and fix some ownership
problems.

We face botb technical problems and organizational/ownership problems. In a surprising aumber of areas these
two aspects are intertwined. Why? Because one focusad 12am on a problem is the right way W solve it. Dual N7
(shightly or radically different) developments cause interoperability issues, time spend synciog, fighting over
everything from ownership to the recruiting of candidates, etc., etc.

I do pot say the following lightly. We are at crisis stage with these problems. We could have accomplished so
much more if we had addressed these organization and ownersbip problems earlier. Problems are not getting
solved. People are getting burned out over the stress and lack of ownership. The problem is much worsc now thao
when] joined the company.

1 will not cover the technical problems bere. T want to discuss strategy.

2 To Do List and Dependencies

People now understand the laundry list of all the things that Cairo (and now Chicago) needs. Here's the basic list
(ignoring all the distributed system stuff and base OS stuff where there seems to be (generally) clearer ownership):

controls standard implementation of base Ul facili
buttons)

text object standard implementmation of 8 text box {¢.g., a mini
word processor)

forms * | standard implementations of controls grouped together
which are used widely (e.g., dialog boxes)

viewer/belp standard implementation of a displayer of rich text

object composer Interface Builder equivalent (e.g., used to glue objects
together)

component builder the eaviroomeot for creating componenls 0 be
available to the object composer

| appless shell applets

mail . the client side integration with the shell Ul and object

model
N MS 0073155 !

CONFIDENTIAL

MICROSOFT CONFIDENTIAL

visual programming the "scripting” language for the shell This 1s the end
user’s ool for making agents for autamation of tasks,
etc.

shell the shell should usc the object composer in order ©
build many of the parts of the Ul (e.g., property sheet
customization).

object infrastrucaure the foundation for all of the above. It's the model and
the implementation of how the bindmg, activation,
static/dypamic, local/remote, eic. aspects of objects
work in the svstem.

T've been asking for resources and trying to get attention to get people warking oo some of these far Cairo for some
time. (I have not beea alone — edwardj/stevem and their people, far example bave both worked bard to educate
people on the eed for Cairo support) It bas been a major uphill battle.

Since the off-site I bave ssen much more attention on trying to address these. Unforwnately, what I'm currently
seeing is Product Group by Product Group proposed solutions. (This sbould go to Chicago, this should go to OB,
this sbould to Cairo, etc.) This is not the right way to make the decision for two reasons. First, the above list has a
natural dependency relationship which should be used o group peopic together. I don't think this bas ever beea
discussed. Second, I question whether our curreat division of Systems "Product Groups” is correct. (1 will return
to the second point later in this paper Section 4.) 1 want 0 focus on the first point now which is true regardiess of
any decision on the second point.

Here's my cut at the dependendies:
Shell
Layer2 Qg;ﬁlets
Visual Programming
[Object Composer (" Controls
Laver 1 Viewer + Text Object
Y | Component Builder __ Forms
(Object Infrastructure —
Layer O - static/dynamic + (0]
| - local/remote 4

Let me explain this chart. Things boxed together have a natural synergy. If these functions are separaied, it will
make the design much more difficult Frankly, I think we may bave a mess. We could discuss whether design
could be scparated from development Depending on the box, it may be possible, however, I do oot recommend it

Each layer represents a conceptual separation where dependencies are from higher layers to lower layers. Finally,
each layer also has dependencies. 1 bave grouped tbem left to right For example, the Object Composer requires
tbe UT controls, text object, etc. in order o be useful. That means that the shell is closer o Viewer work than (o
the UT controls work. (Breadib first walk of tbe ree.) They don't have 1o be done by the same group, but there is a
strong tie bere, It will be much barder if they are separated and not uoder the same technical manager. Having
different layers owned by the same group is the least important issue. However, the layers juxtaposition means
there is a dependency, so a closer working relationship is required.

MS 0073156
CONFIDENTIAL

MICROSOFT CONFIDENTIAL

Conclusion? We should group projects together according t0 this chart and establish a management owaer for
cach box. (For example, visual programming sbould not be separated from the shell UT work.)

3. One Owner

I can't empbasize enough the problems with having multiple (or unclear) owners for things. The result is massive
frustration and very slow progress. (It is a commitice besed approach.) [can pame many examples in the
compary today:

e OLE/Cairo
Who really owns the object model? Who makes decisions about versioning as a case in point
OLE/Cairo work closer together than most groups in the company. For exampie, Cairo did the DocFile
design and development for OLE 2. Both groups bave worked very hard to ensure that we are
compatible, etc. The point here is that is has been very painful and slow. We bave burned many
engineering bours after the fact once we've leamed one of the groups had gone done a differsnt path.
This is very inefficieot

« Forms: OB, Access, AFX, etc.
Unless something changes immediately the shell won't be using any forms. Property sheets, ete. will
have to be built by hand and there will be no modification architecture for them. Whether the problem
bere is lack of owncrship or lack of delivery is unclear. 1 personally don't even know who 1o bold
accountable. :

s Object Composer: AFX, OB, ?
App Studio isn't close 10 what we peed. It doesn't follow the object model of Cairo/OLE and is dependent
primarily on MFC (it does support VBX integration, bowever). However, App Studio is a begining. But,
both OB and AFX may believe they own this problem. (1 think that the Object Composer should not be
tied 1o OB. It should be able 10 tie together a component WTillen in any language if it follows the object
model. However, 00 one bas really made this clear.)

e AFX/OLE :
Who owns the C++ definition of the system API? Sbould OLE define C++ interfaces or not? What is the
role of the AFX group if they do?

e NT/Cairo

What is the role of NTFS vs. OFS? Why are we building two file systems?
e cwc.etc. the listis very long.

Let's look decper at two areas: the object infrastructure and the shell The object infrastructure has been split
between OLE and Cairo. It bas been 2 monumental effort to try and keep these in sync in two differcat groups
split across the campus. It would have beea so much more efficient to bave everyone in the same building, Being
in the same group would bave been that much beuer. It bas been clear 1o many people that OLE was attempting to
define the new programming model for the Operating System They were not in sync with the history of
Windows. | don't understand bow that group can be separate from the OS/Systems group. Remember OLE has
two levels: infrastructure and applications interfaces. | am specifically separating the infraswructure from the
applications interfaces; the app interfaces should remain within a central group in applications where the interfaces
are agreed 10 by the groups doing the code sbaring. Bouom line: Cairo and OLE infrastructure shouid be in one

group.

The shell has been hard because it bas been challenging design wise -- RO excuses here. However, a fundamental
problem (he group has had is e buy-in required from N groups. This situation has recently improved gready

MS 0073157 3
CONFIDENTIAL

MICROSOFT CONFIDENTIAL

with Chrisgr having more respect from the Application product groups. Before this, we had to bring togetber (and
we did!) the different program managers from Apps. What a way o try and make decisions! 1t wasn't ciear who
counted in this process — APPA or the individual product groups. And, furtbermore, did certain product groups
count more than others? Of course, we can't forget Tandy's group. Things bere also are working much beuer
recently, but the fact that Tandy's group did not have a clear charter and ownership left another group for the shell
people 1o deal with. It wasn't clear who counted again.

Conclusion? We need to be hard core (absolutely ruthless) oo who owns what. Clearly, many peopie want to own
things. They all cannot. We then peed to move pbysically everyone associated with the effort into one group
headed by a strong manager. This will ensure high bandwidth communication and maximum focus on the
problem at hand.

4. Systems: DOS, NT, and Windows

We are organized wrong in Systems to accomplish what 1 understand our goals to be. I believe the organization is
not only incfficient and frustrating, but it is oo the verge of lying to the marketplace. Even though not exactly the
same, it is still very similar to the OS/2 disaster. Here's why.

Basically, we want two things. First, we want to tell the marketplace that Windows is the product and we have
two kernel implementations: NT and DOS. We want everyone 0 focus on Windows. But, we don't have the
groups organized tbat way. We bave them kernel organized.

Consider APIs. We certainly did the right thing defining the win32 API so that it would be common on both
kerpels. The reason that worked was that one group (NT) owned defining that API set. (Evea though it required
close coordination with Windows 3.1 since they added APIs) I bave assumed that Cairo owned the central
coordination for defining that API for the next generation. On our current path however we will bave both the
Chicago and Cairo rroups defining APIs with people not even working in the same building. Again, one owner
needs (o be defined. But, it's a lot more than the API bere: it's the UL the end-user programming model, the mail
integration, the macro language, eic.

My point is sumple: these higher level feamres make up the product - not the kernel. We should not separate this
functonality if you want present a consistent model (o a programmer or end-user.

Second, we want 10 eventually drive to one kernel, (It doesn't matter which kernel.) The cusrent product group
structure will ensure that will never happen in my opinion. Why? It's just natural that each product group will
continue to enrich their products so that driving to this will be impossible. The current situation is very
concerning. We our beating the drums about NT, NT, NT. (Remember 05/27) We are telling everyonc to write
new device drivers, transports, file systems, etc. etc. At the same time, we are quiety working in Brad's group on
improving VxDs and changing the structure of the system so that we'll want Novell, Banyan, eic. all o write 1o the
new mode! here also. There is 2 new IFS mechanism, new VD support, etc.

If NT's advantage was great, then this strategy might be OK. But, what I sec is a set up. Whea Chicago comes
out, the advaniages NT bas over DOS will be few: portability, security, and SMP. Very few people are beating
down Microsoft's door for these. 1f the product groups were set up differeatly, then perhaps this would be fine and
it wouldn't matier as much how confused we are about the kemels, but today we have a structure which is kernel
focused not Windows focused. This kernel (and organizational) focus leaks over into the Windows desigo focus. I
don't buy that there are such special requirements about the DOS version that aren't true for the NT version.
Performance is performance; small size is small size; ease of use is ease of use. Everyone wants these. These are
typically poor market segmentation vehicles. Nor do I buy that Cairo bas different requirements than what is
required in the DOS version.

MS 0073158 4
CONFIDENTIAL

MICROSOFT CONFIDENTIAL

Corporate and Network Systems

|
I
l
!
I
I

Personal Systems

Today, we have chopped our baby (Windows) up. There is no ceatral control of changes. I just noticed that NT
added special support for admin controlled program groups. 1 dou't know, but I expect that Personal Systems has
thought about this for Windows for Workgroups and I doubx if there was much communication about the change.
Today, the effort is set up so that the NT group is basically building a new kernel. But they continue to slowly
evolve the UL As we move on to Cairo we have to decide where the ceotral focus of the design is. Sbould owr
baby be divided into across product groups? The design focus should be driven by a Windows Product Group.
And all the people who deal with the Ul, programming model, etc. for today and tomorrow should be in that group.

Where is the vision of Windows coming from if we divide up the respasibility? It was oo paper the Cairo group,
however, we were not organized in order 10 make that succeed after Window 3.1 shipped. If we divide Windows
up along kervel lines,] can assure you we'll never have a consistent model. We'll bave duplicate people in the
different groups repeating/competing between them for features 0 be added 0 the product. Unless we name a
single person for the vision there will not be one.

I should point out that at Apple the Mac group apparendy bas the structure that I'm proposing bere. They have

- several different kemnels that they deliver oo with slightly different requirements Gust like we do). However, there

is a central Ul group, programming mode! group, etc., eic. That group is the Mac group. They are much beuer
organized than we are in my opinion. [realize that this may appear o be radical. However, you bave not been in
the treaches trying w get focus. This would force focus on the right things. There would be no confusion for
applications on who they should talk to. Furiber, our story to the market place would be less confused.

So bow would we implement such a strategy? One person needs o be samed head of the Windows design.
Everyone dealing with Ul, programming model, etc. should work for this person. The kermels could remain
separate groups. I think we bave some options dealing with Windows marketing. Probably the right way w do it
would be 0 combine all Windows marketing under one person. This would ensure that consisient messapes are
given 1 everyone. There are some differences in the positioning of the different Windows sysiems that could be
addressed in a number of ways citber within a central group or by baving it segmentsd. One of the biggest
problems with a strong segmentation is that I think Windows and Windows NT will overlap segments a lot. (Of
course, having them in separale groups today, we will guarantee confusion.)

The DOS group would continue on shipping DOS. This makes sease because we already have everyooe together
in one group whbo designs and markets it.

Don't think that this would overload the head Windows design person. Someone must own putting together a
coberent, consistent Sysiems story. 1f we separate it, all it does is make the problem barder. (Thbat person cannte
be Paul because we are simply split across the wrong divisions. Paul would end up trying W rationalize the
products.) Frankly, we will compromise every step of the way and the Cairo vision will not be implemented.

!amnonheonlypemn who thinks our current approach is incorrect. So why don't we change it? One
interesting comment that came from JefTb was that sicveb 1old him last fall that we couldn't because brad, paul, and

o7 MS 0073159
CONFIDENTIAL

MICROSOFT CONFIDENTIAL

I were all senior guys who needed to run a big chunk of the business. This is not necessarily a good reason. It
certainly isn't a business decision and it wouldn't be the ooe that I would make.

S. Conclusion
1. We need to organize around functions that have interdependencies.

Even if everyone disagrees with my apalysis of the Product Group definitions as we have them today, it &
important to address the dependency issues I raised. Assuming no Product Group changes, thea I would propose
that Stevem own the Sbell grouping. Jeffh own the Object Composer grouping. Someone in Brad's group should
own the Controls grouping. And Edwardj should own the Object Infrastructure. 1 would propose that stevem,
jeffh, and edwardj work for me. [would move asmust (from NT) and gregw to brad's group to work on the text
object. 1 would move bill mitchell and chris westin to the address visual programming. Neilk would contioue 10
work in the controls areas. (Additional belp would proabably be required here.) I would assign david stutz t the
Object Composer area. I would move Bob Cooke to work op Applets. I would move Chispin Goswell 1o work in
the Object Composer area. I would raid other areas as necessary (0 staff the Compoaeat Builder area

2. We need to address the Product Group problem we bave i Systems.

Doing (1) above is not optimum at all. We really baven't faced up to the real problem if we dop't reorganize the
Product Groups themselves. We bave several choices:

(a) We put all the *Windows Product Group" into one of the kerpel groups. Clearly, Brad's arca seems the
most likely. 1sbould then be reassigned: anotber division (e.g., ols & db) or 777,

(b) I take over the Windows area (design and marketing) with Brad owning DOS (development and
marketing) and NT development.

(©) 1 take over the design of Windows.: Brad owns the business side. NT and DOS development could be -
bandled in a number of ways. Eitber I or Brad could pick it up — or even maybe Davec should pick up
development ownership of both.

(d) Brad takes over Windows (design and marketing) and I take over the DOS and NT kernels.

1 believe my lost from the future design of Windows would be great. Therefore, probably (a) and (d) don't make as
much sense. It is unclear that (b) leverages Brad and may overioad me given the design issues that we face. That
Jeaves (). Maybe there are other options. Oue thing is for sure, I'm convinced it's broken pretty bad today. It's
oot that Microsoft won't come out with a good product if we leave things alone. From where we are today that
isn't o bard. But, we could create a much beuter product, faster, with less frustration by changing. I sec the
change as inevitable.

This situation isn't that much different than the issue of baving NBU separate from the operating system (NT or
0S/2). That organization of Product Groups was also incorrect. Networking needed 10 be apart of the OS group.
Our products will be so much better because we made that decision. It was painful at the time, but the result will
be an order of magnitude betier petworked OS than baving separate Product Groups. There is litde difference
with the Product Group mismatch described here. It's the same problem. We will fail botb W build the best
product and we will confuse the marketplace because we don't bave a central focus.

o : MS_0073160
CONFIDENTIAL

