P

Erik Stevenson

From: Jim Alichin

To: Mike Maples

Subject: FW: win/x

Date: Saturday, February 20, 1993 10:36AM
fyi,

jim

From: Darryl Rubin

To: Bill Gates; Jim Alichin; Paul Maritz
Subject: win/x

Date: Friday, February 19, 1993 16:13

Here are my thoughts on the win/x proposal. I'll comment separately on technical and business issues.

Technically, | love the 'proposal. It does a much better job than Scottra's op‘ginql YVOM proposal in terms of
truly just extending the existing windows architecture in a graceful {and quite minimal) way, as opposed to
providing a parallel architecture that just has a windows look/feel (which is how 1'd describe the WOM
proposal).

As is well recognized by now,.existing OLE is a parallel architecture that doesn't even have any of the
windows look/feel. This has resulted in a massive reinvention of the wheel, in terms of duplicative
conventions for memory management, notification, registration, etc. The fact that Ul elements like
windows and controls are in a different world from component objects has also created a lot of ugliness
and confusion. The win/x proposal solves all these problems and | see no defects in the design approach.
It is the most rational design document |'ve read in at least the last two years.

I'm enthusiastic about the proposed type model. This is much better than the interfaces model. Dealing
with interfaces has proven to make coding much more cumbersome, especially due to the need 1o do
queryinterface calls all the time and to reference count the interfaces. | think win/x provides sufficient type
safety. If there is a tradeoff, it is just that Microsoft must administer 1SV id assignments, and each ISV
must internally administer type and message number assignments. Administering message number
assignments within a large organization is the bigger problem, although it is not a killer.

Another thing | like is that the win/x model is more language independent than OLE. There's no developer
penalty for using C (or whatever) instead of C+ +. OLE is very C+ + oriented.

The proposed simplification to monikers is good. | had suggested basically the same idea to Gregw when

monikers were first being designed, but the OLE team rejected this on the belief that having to conform to
the system pathnaming syntax would be too constraining. 1 don't see that as a problem and think that the
win/x moniker scheme makes dealing with persistent objects much more comprehensible.

Another possible plus of the win/x proposal is that it's easier to see how we cram component object
capabilities into our very low end {mobiwin, winpad) enviranments. Right now OLE seems too big and
complex for that.

Regarding concurrency...} agree with the statements about the problems being the same for messages
versus rpc's. However there is also a consideration at the application programming level. The windows
messaging model is more complex to manage than a purely procedural model because once you've bound
two objects messages can fly in either direction at any time (actually, messages can even come from
objects you haven't bound to but let's ignore that). This is just a way of saying that windows Is an event
driven programming model, which the interface model Is not. To a large extent this should be a non-issue,
since windows programmers have by definition already learned to deal with this programming model and
win/x is just talking about leveraging it. The question to be careful about is how much harder does it get to
implement under the event driven model when the number and kind of objects an app is connected to gets
much larger. This probably Isn't a killer but it could use more thought.

Another consideration related to this is that most of windows programming today deals with lightweight,
runtime only objects that exist in a strict parent/child relationship. You don't really have to worry about

Page 39

LAINTIFF'S
EXHIBIT

| 1s5e2

Comes v. Microsoft




keeping track of who's talking to who—you can pass hwnds around without worrying about binding, ref
counting etc. However, with component objects it's a greater concern for the object itself to understand
when it's still really needed since it's implementation and the resources it consumes (and the persistent
resources it's connected to) are opaque to the apps that are using it, and there will be broader sharing of
objects among multiple callers. The win/x proposal doesn't seem to address this, but that shouldn’t be
hard to take care of.

Clearly, if this was three years ago, there'd be no question in my mind that win/x is the way to go, and the
result would have been a much faster exploitation of OLE-like capabilities. (We might even have solved the
forms problem by now!} However, should we change now? This leads to the business issues.

We've been able to win with our Windows apps partly because we've been the leader in exploting the
systems platform. If you look at us today with regard to OLE, this is still true. Microsoft is way ahead of
anybody else in leveraging OLE. Of course this is largely due to how complex OLE has proved to be. The
result though is that we're very far along in exploiting it and very few other ISV's are.

The possible gotcha in switching to the win/x proposal Is that suddenly we may find ourselves far behind,
instead of in front of, our competitorst This is because few of them have deeply committed to OLE coding,
and so for them win/x creates a new, simpler alternative for implementing OLE-like features. They can just
get started and do it. We on the other had would be set back as we tried to redirect our coding efforts,
and also did the extra work to make our new win/x support interoperate with existing OLE-supporting app
versions.

A big question would be, if we did win/x, would we try to make the change for chicago, or just cairo? If
chicago, then we derail other very OLE-dependent projects, including the shell, and mapi. If we do not,
then we establish this very high volume platform that ships with less than a year's delta from cairo, but
whose whole architectural underpinning from almost the system level alt the way up to the shell is OLE
rather than win/x.

Another thing to think about is ISV and customer perception. We are coming into the timeframe when we
may face competition from alternative object-based systems, and in a somewhat different sense, from
Notes. Redirecting our architecture could cause a lot of uncertainty about how stable our direction is. A lot
of energy would be focused on understanding the differences between the old OLE and the new win/x,
which could detract from commitments to implement either one. The door could be opened wider for
people to look at competitive solutions since as long as people are now back into evaulate things
mode...It's even possible that some isv's and the press would portray this as yet another piece of clever
misdirection calculatingly foisted on isv's by the evil empire.

A basic question we need to ask is how much will the ugliness and complexity at the heart of our system
impede developers, especially versus the possibility of a system like Taligent hitting the market which in the
worst case for us turns out to be beautifully simple and elegant? While | have no doubt that the
complexity has already impeded a lot of development and will continue to do so, tools continue to emerge
that hide the underlying grunge (VB, AFX, other kinds of high level wrappers and development aids). The
OLE/Windows dichotomy will probably become moot over time to most corporate and vertical market
developers. It is mainly the hardcore horizontal apps developers who would continue to suffer the pain, and
in certain ways that's good for us near term. Where it's not good for us, of course, is in the additional
design and development inefficiency it creates for us long term, and the risk that the hardcore developers
get attracted to a much simpler alternative platform.

l must admi; I'm very torn between the choices here. Technically, win/x is totally the right thing to do and
I think a switch would bring a huge benefit in terms of making the system smaller, more rational, easier to
develop for, and easier to implement good general purpose tools for.

On the other hand, such a switch could set back both systems and-apps schedules enough to lose critical

N

market timeliness versus Taligent, Notes, etc, and it could stall ISV commitment to our new platforms while
people try to sort out what it all means. .

0183138
Page 40 CO‘:‘?— IDENT IAL




