\ PLAINTIFF'S
| % EXHIBIT

1135

Comes v. Microsoft

A Paradigm Shift to IAYF

Jim Allchin
July 22, 1993

1. Introduction

I don't consider any of the thoughts in this memo to be deep. 1 don't consider them 10 be vecessarily original.
There may be some pew things included, but from my perspective, most everything in this memo seems pretty
obvious. Surprisingly enough, bowever, a paradigm vision is lacking at Micyosoft and a global company
implementation plap is missing. ‘What's most alarming is tbat there arc key managers that do not believe in
paradigm shifts. Perbaps, this memo will help in focusing mare attention oo this vision.

2. What is a Paradigm Shift?

A paradigm shift is a change in the way we think about things. 1t must be a fundamental cbange ~ so findamental
tbat continving to comsider the world using the previous model is at best sub-optimal and at worse will produce
incorrect answers (o questions.

Throughout the bistory of computers there have been quite a few paradigm shifts. Some of these include bigh
Jevel languages (c.g., Fortran), timesharing, PCs, 123, WYSIWYG (e.g., bitmaps, mice, laser printers), petworks,
coosumes devices, etc. Itisn't bard to list them. -

What are the implications of these kinds of paradigm shifts? Therc are implications on customers, the market,
and suppliers. From a customer base perspective, a paradigm shift . '

» often requires new investment (e.g~ a MOUSE, ICMOXY, CONSUMET device, &1£),

« broadens the user base in some meaningful way (¢.g., scicntists with Fortran),

« changes the work process (flow, jobs, eficiency) in some impartaot Qvay (c.g., spreadsbeets),
« usually changes the answer to the question of "What is a computer foc?”

A significant number of people must recognize tbe model change or i's oot a paradigm sbift by definition. A very
impostant beocit of a paradigm sbift is tat tbey are, more oficn than not, bard to accomplish. That is, becausc
they involve a new mode!, old techniques don't lend tbemselves easily to the new model. In sbort, be who gets
there first wins in many cases. This is true outside the computes field, but well stay withip our own business
sector bere. 123 caused a paradigm sbift Microsoft was unable 10 surpass this until Excel leveraged the “pretty
face” aspects of Windows. As good a product as 123W is now, it will be bard for them to surpass Excel. There is
usually a bigh cost of entry to the paradigm shift The more lead time you bave, the more you win. Of course,

" “Microsoft Confidential Paradigm Shifts 1

MS 0073148
CONFIDENTIAL

this assumes that the paradigm sbift does tbe items listed above for people — that is, the demand must be present
Once you miss the wave and a leader is established it is quite difficult to overcome this. The best bet is to jook for
the next shift and ride that wave before your competitors. The biggu:t mistake companies bave made is to ride the
previous wave too long. Consider consumer devices vs. PCs vs. munis vs. mainframes. Consider character vs.
GUl interfaces. Consider direct vs. indirect selling. At the same time it is important 1o bypass a wave that won'i
bave sufficient user bepefit. Doing this leaves you investing in a techoological area that will quickly be overcome
by a more important wave. Just like surfing, knowing wbich wave 1o catch and when is key to being wildly
successful.

A final point is that one way 10 deem whether a change is a paradigm sbift or oot relates to the difliculry in
changing 10 the new model. Things that are easy to do (or clooe/copy) usually do not represent a paradigm shift
Companies that do paradigm shift first win very big because of this fact.

3. So, What is the Next Paradigm Shift?

Lots of people bave proposed what they think this next paradigm sbift is. Jdeas that I have beard people talk about
include L

Ul changes (e.g., Tabs everywhere)

OLE 2 applications

Tighter application inlegration (c.g.. drag/drop everywbere)
shell extensibility

SD1

ability to do add-ons an customization easily
tools 10 write applications fast

OS services viewed as objects

query

new storage systems

etc.

e & 0 v P ¢ ¢ ¢ 0 ¢ o

Itis pretty easy 1o argue that some of these (e.g., tabs everywhere, a prettier shell Ul face) do not change the model
suffidently to address some of the characieristics I mentioned above. (How Jong would it take a competitor 10
copy cach one of these? Not very long.) Tve beard people say the shift is really just Jumping some of these
togetber. Even thinking about lumping them sbows that the essence of the change isn't understood.

My'paspecﬁve is that there is one paradigm shift composed of three fundamental pasts. These are Information
Access, Programmability, and Composition + Components. Each of these pants offer enough power 10 be a
compelling paradigm shift alone. However tremendous power comes from merging them. 1 believe we are
already moving abead in each of these areas, but certainly I think that the key essence of cach part needs 1o be
continually restated.)

4, Information Access

The primitive form? of this paradigm sbift is (o change tbe searching and retricval strategy at the deskiop and then
remote Lhis capability. Access to items in file systems and directory systems today is slow and primitive. No
commercial system offers native support for attribuies oo files and indexing support for both attributes and the
content of the files. We believe this will dramatically change the way people deal with finding information.

A more gepenic form of the Information Access paradigm shift is covered laler since it depends 00 vndersiaoding enscapsvlawed content and suucual
panizers.

" Microsoft Confidential Paradigm Shifts MS 0073149
CONFIDENTIAL

. Ow implementation of this is OFS and catalogs- Locally, a user will expericnce significanty more flexibality in
access and bigher performance than traditional file sysiems It is my belief bat users will want 1o use this
capability completely as soon as they experience it Unlike file sharing protocols that require the data to be
dragged oves the network, we do the (query) processing at the site where tbe data is stored. The result is
blindingly fast information access in a network. We changed the SMB protocols in order to achieve this.© We
belicve customers will be bighly interested in Cairo "Information Servers” in their networks. We bave areated a
paradigm sbift.

This paradigm shift offers a new mode! for users and that's great. The real beauty is tbat Novell cannat duphicate
this capability casily. It would require a significant effort to first duplicate fupctionality such as OFS and secood
clone the capability to book out the object interfaces that are used on the client 1o coonect to their updated file
system. Furtber, if they try to mimic the SMB protocol, then because of patents we can control that as necessary.
We will bave a lead in providing the server functiopality in this paradigm shift

As part of the work we bave also added DFS and support at the win32 level for link tracking. However, these are
ot the keys to this shift. They are just features that belp making the infrastructure betier abie to support both of
the shifis discussed in this paper.
This searching capability and distributed system infrastrocture suppart we are doing will also burt Notes, but not as
much as NovellL In order to overcome Notes, it requires the otber paradigm shifts discussed below also in
addition to this shift

Although I consider this shift fairly simple to understand, the impartance should not be underestimated. [Anow of
no way 10 beat Novell by afeatures war, Certainly if we bad competitive features and thea priced the system low,
we could burt them. But, adding a directory service, security features, etc. would ot be sufficdent for a customer 10
switch 10 Novell. Even arguing lower administration costs of something like this simply won't work. We have 10
do sometbing that the customers say "I bave to bave this feature.” 1t must be so compelling that they are willing to
accept pain in baving a mixed network for a while and willing to invest in the new approach.] fecl comfortable
we bave defined this.

I simplified the presentation on OFS especially when you consider tbe capability of Inference technology. We can
dynamically cluster and categorize information in ways that are very povel in personal computer systems and
servers today. . The addition of these features will accelerate the transition to this wave by making the
environment more compelling.

5. Programmability

Everyooe will be a programmer soon. People want to tailor their solutions to their problem from building blocks.
They do not want 1o have 10 write toos of code. That's why they want things like an Excel wosksbect VB control.
Every application object should be programmable. Another way to think about it is that anything that can be done
through the UI should be able 10 be done programmatically. The metbod for doing this programming should be
consistzot between all components (between supplied by the system or an application). Moreover, standards must
be defined 5o that even if we doo't switched 10 sbared implementations everywbere that exactly the same invocation
metbods work on similar components in different applications (e.g., canonical IDispatch names and ids).

Finally, even something like VBA is much t00 complicated for many people. There are many cases where code
sbould nos be réquised. There are two approaches 1o this: wizards which write the necessary code of morc
powerful negotiation capability where the objects themselves ase able to abstract what sbould bappen wben one
object is connected 10 another. This is an arca where Microsoft should focus and become a leader. This is a buge
revenue opportunity | think for the Tools group. 1f cveryone is a programmer, the market is a lot bigger.

"Microsoft Confidential Paradigm Shifts MS 0073150 3
CONFIDENTIAL

6. Composition + Components

The paradigm shift here is to restructure our applications and systems so that conient is encapsulated (as objects) so
that it can be used by other objects — especially objects focused ou structuring these otber objects. There are many
arguments for making software “object-oricated™. You could look at it from the technology perspective and talk
about code reuse allowing greater synergy (e.g., a single toolbar implementation and therefore puaranteed look and
bebavior commonality) or the fact tbat you should be able to produce more software because of the lack of
redundancy. These are all valid, but they only impact the customer indirectly. Tbe question is what is the key
shift that is possible by moving our system and applications 10 be compooents that are composable/structured?

People now see compound documents (e.g., in-place editing) as an important productivity gain. However, beyond
this, Microsoft as a whole hasn't seen the potential of this path. In fact, I believe people are aaively fighting
adoption of this perspective.

One way to visualize systems is in layers. At the bottom are atomic objects. These atomic objects are then tied 10
one anotber to make up somewbat larger building blocks. Thbese are m turn are composed to creale yet larper
objects and so on. Code is used to glue the objects togetber at each level. Consider a programming language.
You define several structs and then define ap object that links them togetber 1o form a larger survcture. If the
encapsulation is done comectly, then you could deal eitber with Lbe suucture itself or be individual objecs
maintained in the structwe. Furtber, tbe structwre can be insulated from the types of objects that are linked
together. :

This wasn't some wild academic discussion. Everything above applies directly to the paradigm shift. We want
objects Iike the structs above to be able 10 be composed in the same way by larger container structures like tables,
lists, documents, dependency graphs, Ul forms, etc.

Clearly, objects can be containers as well as be coptained, bowever it is useful to discuss the main purpose of an
object: to be composed or to do the composing. This Is quite visible in the OLE compound document architecture.
There is a set of interfaces that must be supporied if you want 10 be embeddable and another set if you want to be a
contaiper for embeddings.

6.1 Content Objects

OLE has focused op making embeddable content objects. There are two issues facing us dealing with conteot. All
the interfaces that are needed 10 manipulate these objects in a wide variety of containers are not yet defined. The
recent work on OLE objects as cootrols is an example of this. (Even simpler is the fact that we need overlapping,
transparent, non-rectangular frames, eic. support in the interfaces we bave today.) The good news is that given we
decide on the type of container strucures we want an object 1o participate in, we can architect the appropriate
interfaces so that object cw be fully uiilized in the structure. Secondly, we baven't leveraged our current
applications through composable pieces. Cairo bas defined an RTO which is quite powerful. Why isn't this
some form of Word? Wbat will Word's role be after we are done? I believe we will end up with a small bierarchby
of text conrols (2 maybe three -- from the RTO up to full Deskiop Publishing support). Cairo hasn't defined &
dependency praph container structure object yet, but why wouldn't that be a slim-fast Excel?

An object is something with a moniker to it. This means that the granule size of an object can vary dramatically -
it can be anything the serves code wants it o be. That is, it can reach way down inside itsclf and prowote a cell, a
character, a line or anything else into being a first class object. This is a beautiful tradeofT allowing any size entity
to be manipulated, composed, eic. efficiently without baving 1o follow some formal object-oricnted specific
progranming design methodology (otber than OLE).

The implications on storage of content vbjects vary depending on object type. Video clips demand certun features
and a Ul button control requires another seL It is important that storage is absuracted so that these different types

:Micmw(l Confidential Paradigin Shifts MS 0073151 4
CONFIDENTIAL

of cootent objects can be supported efficientdy. The IStorage/1Stream/etc interface set in OLE and Cairo hits well
with the OLE compound documea, forms, and file systexn models.

6.2 Structure interfaces and Container Objects

Ever wondered why as spreadsheets, word processors, presentation packages, databases, project schedulers, etc. get
more feature rich that they start overlapping more and more with the otber application feawres? Each of the
applications continue 10 specialize on one thing (more on this below), but we are starting to see many of the same
capabilities in different types of applications. As cootent continues 10 be more encapsulated — what will these
applications be specializing in? Stevem bas writicn a great paper which begins 10 discuss separating content from
structure and oo the application model. This is an important key that seally basa’t been understood widely before,

A spreadsbeet should be able 10 bave full word processing capabilities within a cell and a table within a word
document sbould be able to bave full worksbeet capability within a table. - A ficld in a database sbould bave full
word processing capabilities and database values sbould be able 10 be used in a spreadsbeet. And so on. So,
what's the difference betwezn all of these? :

These containers differ in a number of dimensions: highly efficicat suppost for some views, assumed transaction
model, etc. We peed to decompose all the possible structures into ones that are ortbogonal to each other and
provide the most power 10 a user. For example, document, 1able, dependency graph, collection/set (aka folder),
etc. Just like in everyday life there are different organizers for different tasks, this is true bere wo. Our
applications today are beginning 1o share content objects — they do not share structuring at all. Most of the
interfaces (as in OLE) bave not been defined for them to do this yet.

If we can create canonical structuring interfaces and containers supporting these, there are buge benefits for users
in a pumber of ways. If you believe that people deal with bewerogeneous pieces of information 2 lot, then baving
the strucwre separate will be a significant advantage in letting someone both ask questions and organize
information efliciently. Certain structures are more apt o be used for beterogeneous use than others (e.g., folders,
forms), but other coptainers offer new advaniages for manipulating beterogeneous data in new ways. 1 can
imagine being able 10 set vp dependency information amoog lots of different types of objects by using propestics on
the objects, for example.

Users want to see data presented in different aspects using different structures and so it iso't surprisiog that the we
want some powerful containers supporting many of the defined structuring inserfaces. To support these interfaces
efficiendy the storage system must provide intrinsics that Jet the information be viewed and rearganized quickly. .

In Cairo so far, we have concentrated on providing only a few key cootainers. I will talk about two of tbem? bere:
smart folders and smart documents. Folders are a quite generic form of & set which bas much richer capability
than what people normally think of as a folder — especially if people relaie them to directories of today's Gle
system. Folders are set structuring containers of beterogeneous objects, have inurinsic views on their contents
(c.z- chart views over some property of fast report views by pre-indexing certain properties), rich iterations
functions (e.g., bistory like in Help), pative usage support (e.g., read/unread tracking), etc. We are attempting to
push this one structure to the extreme.> We have also focused on supporting easy customization of this structuring
object — thus the name smart since it is possible to change the behavior easily through add-im code (prepure 10 do,
do, and after do events). ’ .

The other key container class that we bave focused on deals with simplistic documents that bave rich “form-like”
structure. We call these sman documents {or infodocs). We believe containers of this type address a wide viriety

2 A pothes important container in Caiso is 3 FORM.
-'\'ﬁu'.s Gamcwork heips us clarify when a stucturing coptaines is 30 fundameatally diffarent 10 a nser that it should be weated scparately at 3 ocw
concrpt (c.g.. consider projects, workbooks, ric. compared 10 foddas)y

" Micsosoft Confidentizl Paradigm Shifts 5
MS 0073152
CONFIDENTIAL

of needs used to run businesses today. These are disectly competitive with a Notes” note. We are using them lo
build our Help and Mail documents. Clearly, these documents ase potbing more than forms with some controls
that specialize the documents for their intended purpese (e.g., bistory cootsol). Just like the set containers above,
these documents are smart because it is possible 10 add bebavior o them. Note that altbough 1 discussed these
documents as a container, they arc also a content object as well (e.g., they can be stored in a folder or manipulated
by otber structuring objects). .

The key to Office is the undersianding of ‘the key contuiners and key objects that need 10 be supported. Cairo bas
made a start by thinking about this area, but I hink it's only the beginning. Througbout the company there are
people that are lightly touching ou this issve, but they do not bave a common vision of the desired outcome.
Databases struciuse data. Spreadsheets structure data. Project management systems structure data. PIM systems
structure data. | bave a great fear of overlap in these structures which will result in a confusing array of structures
for users to choose from. We need 10 decompose these structures down and find the minimal set.

Certain structures are only efficiently implementable using a particular storage arrangement. Relational database
systems separate data from structure by normalizing the data completely and then binding the objects together
through a calculus. _In order to achicve performance, almost all relational systems use b-trees with clustering
bebind each table. Moreover, in many cases they dynamically do things like store prejoins under the covers for
performance. Storage matiers 10 structure.

What this means is that for cach structuring container, a particular form of storage support may be needed. We
bave found that 1o be true for forms, compound documents, and smart folders. As ap example, we added
read/unread trackiog to OFS for folders so that we could achiéve highes performance ratber than maintaining the
necessary tables in application space. A rich storage system like OFS is ope piece of the puzzle. The moral:
understand the structures so that you can optimize the storage.

6.3 Why?
Why is this such an important past of the paradigm shift? Wby would a customer care?

First, people want easier to usc and consistent products. That means baviog common content objects (everything
from buttons 1o complex objects). Second, people spend a great deal of time organizing data — whether through
outlines, tables, documents, sets, etc. The reason why Notes is so compelling is that it provides a rich
organizational capability. Many people attribute this 1o the Notes database and that is partially trve just like when
people refer 10 OFS as the key to Cairo. In reality, it's just that the flexible organizing capability is matched
appropriately to the storage. This will offer great power to cven pative users.

When you integrate all three parts above, you create a rich persohal Information management system.

5. Conclusion

Microsoft is away trying 1o caich the Consumner paradigm sbift wave. 1 believe this shift is casier to understand
because it involves new bardware that is easy to visualize and it involves the intcgration of scveral undersiood
existing tcchnologies: communications, genernl purpose computers, infornation/media suppliers. Clearly, these
are many bard problems and we have a Jong ways 10 £0, but we have good vision and e focused on making this
shift bappen.

On the other hand, 1 think we ase having only very limited impact on the composition + components paradigm
shift discussed above. This is clearly the key one as far as our applications asre conccrned. 1 amn convineed afer
wilking to Ray Ozzie and othess from Lotus that they do undersiand this shift. The same is vue about Borlind.
Clerly, understanding and implementation are (wo different things. | feel that between OLE and Cairo educition

* Microsoft Confidential Paradigin Shifts confs:lggz{%§%a ¢

we have given competitors? botb the tools and the thinking 10 beat us al pus OWR pame. Either we catch this wave
or we will eventually be overcome by the new wave of oor Compeutors. :

This won't bappen overnight, but it could happen. In order 10 command a significant price for our applications, we
must bave significanly more value than our competitors. Today, price wars are already underway. Thbat means
that parity of some sort bas almost been reached. Unless we do something dramatic (a paradigm shift), it wall be
tbeir features compared o our feawres ~ and the price still will go down. Whomever inroduces a significantly
compelling product first (that isn’t clone-able casily) will win the next wave and be able to command the high
price. Notes and Netware sbould be warning enough that not catching tbe wave first costs deasly.

As | pointed out in the beginning some people tbink that doing sexy things in tbe Ul and a little more basic
inteoration will give us a significant advantage. 1 do not. The work in Cairo is dead-on. But at sowne level, we
don't count — it's the applications that count and they must catch this wave.

41 have scen a0 internal document sent from Ray 1o Lotus ahes stending vr Caiso desipn preview. 1 is cleat from that docunent aod from funhes
tadks that | have had wath him, be understands the parndigm shifis | discussed above Furthar, both I and Lotus are using ideas recxived Gomvus in
nulung Notes and Lows applications betier weapons agand us. We have abio educaied Drew Majux on seme of the issucs dealing with ubject
norage We have piven them the genenat raaduap.

Microsoft Confidential Pusadigin Shifts MS 0073154 '’
CONFIDENTIAL

