PLAINTIFF'S
EXHIBIT

A

Web-Cantric Productivity Documents Comes v. Microsoft

To: Chris Peters; Richard Fade; Jon De Yaan; Pete Higgins; Nathan Myhrvold
From: Steven Sinofsky

Subject: Web-Centric Productivity Documaents

Date: August 1996

This memo describes in a brainstorming fashion what a web-centric productivity wol mighe look like. This
idea comes from numerous discussions with many people, so many of the ideas in this are not mine but have
been collected here. The goal in describing this sort of application is to think about what a “new” DAD
product would look like and what some of the assumptions that might go into building such a beast. Thisis
1 follow on to the memo about evolving Office (SteveSi).

The basic premise of this memo is that the Incernet is so fundamentally different that we- must re-examine
what we mean by “Office” in light of the changes brought aboutin infrastructure and workstyle by the
Internee. This does not mean that Office is obsokete ot should be abandoned, rather this memo attempts
describe what an application that starss off with the assumption that Internet is primary, Internct protocols
are the defaults, and that we have learned a great deal about what workers need in productivicy wols.

Who is the customer?

The biggest threat to the Office business is if we lose our ability to scll upgrades w large corporations. We
have a number of clever ideas for cuming this business into an annuity swream, but there is some chance
people will just balk and we will become 2 onc time purchase for each new computer. One computer, onc
copy of Office for the life of the computer becomes the business model. This needs two be addressed in Office
as part of the upgrade/ TCO work that is being thought about for Office9.

However, the real threat to Office is the broadening of users of PCs inside of corporations. These users are
now less part of the knowledge/information workforce and part of the broader workforce. The IT excitement
over of “browsers® and “applets” is that these workers can be given acocss o computing in-an casier to use and
lower cos¢ means. Office is overkill for these socts of workers. There is also some general sentiment that:
Office has become overkill for even traditional customers. There is ceraainly a lot of truth w the fact that
putting Access, VBE, Pivot Tables, etc. on every single deskeop is conceivably overkill. There is also-a great
deal of benefit achieved from the standardization on these tools, as we well know, but this does noc make the

requests from current customers for a rimmed down version of Office moot. .

Email in a sense represents this threat most cleardy. It is now more important for users o communicate
quickly and easily electronically than it is to prepare kengthy documents and distribute them in prine. There
are no fewer propasals, budgess, or plans being created, but in an exponential scnse the number of “document
snippets” being created is exceeding these traditional documents. As the providers of productivity tools to
workers, we must recognize this and apply our skills towards solving the problem of creacing these new
knowledge worker documents.

The observation one could make regarding the Web and its impact oa corporations is that many more people
will be creadng small documents and distributing them via the Web. What might have been distributed as a
copied document will now default to web discribution. These people are starting to use email, though
unsatisfactority. Email allows someonc to easily and quickly creace and distribute a short document to a large
audience. Still they are unable to use cmail for standard corporate communications. WordMail will start wo
2ddress this concern, but nonetheless there remains the view thac Word provides o much “baggage” w0 solve
this problem as well as customers are demanding.
MS-PCA 1281618

CONFIDENTIAL

AScrosoft- CONFIDENTIAL - Copyright © 1994 Microsoft Corporation

Web-Centric Productivity Documents

The typical document created in a corporation is well known. Today, it looks mosdy like 2 Word
document—streams of text, an embedding or two, and that's about it. However, the Web has forced a2 new
way of thinking about communication on corporations. This goes beyond links and pictures towards a now
level of integration of graphias, list management, collaboration, and online presentation.

People have always wanted the “universal container” or the single document type that meers their needs. We
have waditionally approached this by viewing their “needs™ as a superset of the functionality provided by all of
Office. My opinion is thac this is where we need 1o cake a seep back and re-evaluate this assumpdion. We
need to provide an application tuned towards a new paradigm where 2 document more closely resembled 2
collaborative web page that contains the frequendy used clemenss of our current offerings. Although one
could hear “Works™ as the answer to this question, this isn’t the case since Works is nothing moce than Office
with fewer features.

Taking these observations, a big leap of faith, and a speech from Chris Peters about making bes on the
fucure. the remainder of this memo looks ac what this new application should look like. The name Stretch has
been chosen for this application.

To be wually clear, this application does not replace Office in version one nor is it designed to be a superscc of
Office—oday. The goal is to build a framework so that 2 we can have 2 great version three in 3-5 more
years. A sccondary goal is o force platforms to think about certain problems and issues they might otherwise
ignore if ISV such as DAD were not pushing their vision of a placform. -

An imperative of embarking on creating this applicadon is that the majority of DAD remain focused on
Officed and solving many of these same customer issues within the successful framework of Office 97. ltis
clear 1o me that much coopetition will take place berween the Officed team and the wam building this new
application. This is healthy and should be encouraged.

What Do We Build?

The biggest arca where this application would differ from Office lies in the initial design, architecture, and
user-model decisions that get made. In particular the key distincrion resss with the fact thac the world is a
different place today and anyone building an application would do different things. There are several key
arcas which this memo will focus as major architecrural differences. Each of these areas shows how the
current Office framework is essentially the opposite of what-one would do (or has donc) for Office 97.

The items below are just some majoc concepes that I think we should explore. It is hardly definidive or
complete and many might turn out to be wrong, but the general desire is to look at the assumptions chat go
into Office today and see which ones are no longer correct. Clearly Office? should revisic this same list and
change as many as possible. The only argument being made here is one that says, if you make this
assumption from the very beginning you can have a berter resule This is no unlike the difference berween
porting a DOS applicadon w Windows and writing 2 new application for the Windows API.

Some of the important assumptions that arc worth considering include:
¢ Sund-alonc applications dominace
¢ Caccgories consisting of spreadsheet, word processor, presentadon graphics, dawubase
+ Document type defined by paper based presentation format (accounting paper, 8x11 pages, slides)
¢ Disk-based file formaes
+ Binary file formaus for efficiency, with ASCII formaas for transporuabilicy
¢ Code 1o manipulate the document resides on the deskrop only in the applicadions we ship

¢ Nemworking limited to file/print sharing MS-PCA 1281619

CPU cycles are 2 limited
) v e reoute CONFIDENTIAL

Microsoft CONFIDENTIAL 2- Copyright © 1996 Microsoft Corporation

Web-Ceniric Productivity Documents

+ Virtual memory noc available

¢ Operating system services m}low

¢ Users can run sctup on their own

¢ Documents are primarily printed

¢ Images in documents are primarily adomments

o Macros were run in process and for a single application

+ Macros were derived from the user-interface of the editor

o Finding documents is based on storage location conventions

+ Naming conventions and directories are the standard way to group files
+ Mostinformation is stored locally

s Document structure manipulated and created by the user

¢ User-Preferences arc stored on the user’s personal machine

+ Running application setup is the way to get bits onto the personal machine

The above list is not complete, but it gives you an idea of the sores of things we should “turn on end” to see
what falls out. The following are some of the key ways in which 2 new application mighe leverage web

pldggle =N

Seorage and Management of Documents: The current applicadions are all file and UNC based. This
application would store documents on a web server, with scrver side code intervening in the storage and
management of documents. The facilities provided by the server daemon (an ISAPI application) include: -
content indexing, kecping track of the users personal documeng, publishing documents for a workgroup,
publishing documents for everyone to see, logging the histary of a documen, etc. The best way to chink of
this is thac when you create a document, the default action is to place it on the web server, rather than the
local drive. You would store the document in 2 web—centric vession of \My Documenas, if it is prvate, orin a
workgroup/public location as defined by your administracor.. Users would be able to log on:to any machine. - «
and through the web browser see their documents, and workgroup documents just as if they were at their

own machine. This is done via server side code that understands.the notion of where Streech:documensiace:.. - - -
vuon:d./ Of course there is a special case for when you want to save documents o 2 floppy,-but this. is the=
xcepdon- not the.rule as it is today. ’

Project Workspaces: We have long struggled with the idea of creating a workspace of related informacion.
The Binder provides this to some degree, but is really designed for printed documents (it does not even
support links today). The fundamenaal problem we have wntinually faced with Binder was the lack of a rich
. storage model. The availability of 2 web server, which can virtualize 2 store by using secver side code,
combined with native hyperlinks provides us with a unique opportunity to implement 2 truc workspace. For
example, it will be casy w query a server for all documenss with a certain casegory (or edited by a2 departmeng)
and create a virtual page (dynamically generated) representing a project, which can include any number of
document types including email, public folders (via the IMQO), cie. The use of templates and standard
presentaton techniques will make this a roudine way t construct ad hoc projecs. These projects just beccome
locations on the web; they can be favorite places, you can mail URLs to thexc projecs around, and you can
casily add documents to the URL (by adding a link to the home page). Itis only because we would write
server side code that creates chis notion of 2 tracking project that this would be possible. This nodon is very
distinet from the Nashville world where one merely provides richer views of the same old physical directory
we have been trying to wock around for years,

Pecsonalization: A key aspect of server computarion and browsers today is the ability to deliver personalized
pages and content. One can think of this as a glorified per-user registry, only it has the unique advanmge that
it is dynamic and can be parametcrized. For example, server side code can keep track of queries thac | have

CONFIDENTIAL
Microsoft- CONFIDENTIAL _ 3- Copyright © 1996 Microsoft Corporation W
' ’ ' MS-PCA 1281620

Web-Centric Productivity Documents

recendly issues, or it can store those querics for later use. Then from any machine | would be able o gain
access to my personalized information. This is also closcly related to the notion of workspaces, where my
personal workspace is one use of storing personal information on the server. Since there is 2 separation
beeween the client and server code, the personal informadion is available to the browser without running the
application code. Today our applications default o personalizing things on the client side with no separation
beween the editing application and the personalized data. Using this notional of personalization, one could
also use chis 1 store any sort of state information that one would normally include in places like normal.dog,
stevesi.adl, ete

User-Interface: One of the common misconceptions about web-based applications is that they need 1o
*suffer” with least common denominator wser interface. This is truc if you wish to be able to access your
server applicadon from a TV or Linux machine, but if you think of the interface w a produaivity application
as a set of IE3 pages implemented with controls designed by us to wock together in the tgheest, mosc
incegraced fashion chen you can sez how we can build this application to our standards. We would be giving
up the “run everywhere” idea of web applications, but what we gain is very customizable application that can
scparate the description of the user interface from che code thar implemenss it. For example, creating a blank
documenc is really just going to the Blank Document favorite place, which fetches a page that loads a bunch
of controls (made up of real live Office97 user-interface objects like command bars) aloag with code behind
those controls chat dispatches commands to dient side edicing code. Of course there are still dialogs, wolbars,
etc.. but these are all glued wgether with VBS and calls w a rich automation model on the dient and server
side. Again, this is 2 fundamenul assumption where we would change our perspective from today where we
assume the user-interface is hard coded in C within the application w one where the user interface is
described by pages that contain our own controls which can be arbitrarily integrated. At the recent retreat,
these pages were termed Docless, as they have a close relation to Applets.

Collaboration and Annatation: Perhaps the biggest paradigm shift taking place is one where we are moving
from 2 world where sharing documents is the exceptional case to one where sharing documents is the rule. As
the workgroup task force from Office97 showed. there is a dear need for some simple collaborative techniques
0 be added o our documents (and have been in Office97) which indude multi-user documents,
comment/annotations, and change tracking. [n the web-centric view of documents all documents have these
features and these featuces are on by defaule. They are part of the nocmal mode of working. If I am reading 2
document, | should be able o attach an annotation as | browse the document on the web. This should not
require all the power of editing and there should cven be mechanisms where I can do chis if [am running
Netscape on Linux, for example. Today our code for managing versions of documents and recondiliation is on
the dlient, which makes it hard for other tools (management systems) to locate revisions or provide support
for bacch operations.

Decployment: Much thought has gone into the issues assodiated with deploying today's Office and this
situation will improve dramacically in Office9. This new application would of course leverage the.code
download scenarios for “installing” software on the client machine (caching is probably a better word). Again,
the assumption today is that you always run setup and there are some aspects tied © 2 machine. In the
applicadion being desaibed, it is entircly possible o buy a new computer, go o you personal URL and start
working as if you had never insulled any software manually. As Internet Terminals (really just PCs you can
rent at airporus and hotels) become available this facilicy will be crucial. Of course we can and will do much
of this with Office, but this application will be designed from the beginning for this funcionalicy.

Type of Document: The most crucial difference between today’s Office and the future knowledge worker’s
document ercadion nceds is the type of document to be created. Our split of document types today is
confusing to most users, and gess worsc as we add wools like Publisher or Picturelt. There is absolutely a need
for 2 ol as deep and broad as Excel. perhaps for the majority of workers in some corporadions. If you are
writing 2 book, then you absolutely need the power of Word. However, one look at the vast majority of even
today's business communication and you have w0 agree that there is some subset of functionality we can pull
out and provide 2 much more integrated editing functionality. There are reasons why we kesp putting the
same features in all of our applications or that WordPerfect has built 2 mini-spreadsheet within their word
processor. Along with this subset of functionality there are two other distinctions regarding the documents of

MS-PCA 1281621

AMicrosoft- CONFIDENTIAL) - Copyright © 1996 Microsoft Corporation

CONFIDENTIAL

Web-Centric Productivity Documents

omorrow. First, they will not be printed by default In fact, 2s with email today there will be litde need to
print most documents so we can do without the baggage of printing (both in code and user-interface).
Second, documents on the web are “different” than any of our current categories. They have some 2D layout
like Publisher, they have some streaming text like Word, and they have many of the online presentation
capabilities of PowerPoint. It is very difficult t find 2 web page today thatyou could even create a facsimile
of in Officed7 without really suretching your abilicy to use our products. So the document creadon tool of
this applicaton would combine many of these aspects, making tradeoffs where features are lost no doubt, but
the ability to scamlessly switch berween the best of all of our tools tuned for knowledge worker

communication is key.

IntelliSense: One area where we can so clearly leverage our suength is in the applicadion of our "do what |
mean” design philosophy. [include this not because there is anything special we can do in this area that we
could not do in Office, but because so many of the ather people creadng tools for the Internet are sall
designing tools for programmers ot people that want to underseand the wol, not people who have other jobs. -

File Format: An area where our assumptions of the past are very hard to cope with is file formats. Today we
have binary file formats where one needs the full application to even read the contents of the file (excepe for
some third parties viewers than can yank the wext out). HTML is not a magic document formar, but it shows
the power of having a very low level least common denominator that any picee of code can manipulate. In
other words, UNIX made a good choice 2 long time ago. [am not confused about the fact that there is nearly
a 1:1 correspondence with the file format and features in an application. However, the benefic of having an
HTML derived formac is that you can perform a lot of operations on the file without our code (we have
solved indexing, but annotations is the one that is really important, and writing viewers becomes trivial). 1
don’t think there is 2 world where we can have our own extended HTML file formac and anyone with
Navigator Gold could edit the document (imagine trying w edit 2 table in an editor chat doesn’t support
tables—you would just munge the document beyond recognition), but it will be possible to have multiple
versions of our own applications be clever about dealing with the file. We should extend HTML arbicrarily to
support whatever features we need (via the OBJECT g or just our own tags) with the only rule that we
should think hard about how these tags would be viewed by IE3 or Navigacor 3.

Mail: One of the toughest challenges about building a iew productivity tool is deciding on the role of email
in this applicazion. Onc view would be 0 assume email becomes the predominant interface to all of your
work and everything you do, and email is another application on the deskwop. This is probably true. The real
challenge is to decide what document format you mail around.. Well the marketplace and our plaforms
group have decided that this is HTML. So this application can be thought of as a.custom mail note, not as
another mail client. In other words, any time you arc editing a document you can just show the message
header and send it via SMTP to anyone you'd like. This is not unlike ourFile Send command, excepe it just
uses nacive Internet prowcols. Since the document is a viewable variane of HTML any basic Eudora client
can at least view the message, but ic will also be 2 MIME artachment that can leverage a viewer., My inbox
will still be managed by whoever builds the best mail dient, but over time my inbox will be filled with
documents created by our new tool, racher than the basic HTML editor, just as a few years ago inboxes got

. filled with Word actachments, which recently have become dominated by URLs.

News: [t is clear that HTML based NNTP will be 2 key information sharing prowocol moving forward
(despite the fact that 20 years lacer ic still isn’t proving uscful to anyone). Jusc as this applicadion is 2 mail
note, it is also a posdng.

Replication: Perhaps the hardest technical problem 1o solve is how laptops work. The real problem that needs
1o be sotved is getting at the server functionality and server documents when you are on 1 laptop. Rather than
assuming ubiquitous wireless connectivity, this application would need w support seamless local replication
(like Milkeruck, or Exchange if you didn't have w intervene manually).

Annuicy: A key aspect of this application is that it is s0ld as 2 combination of a client and a server. Each user

is licensed and since there iz abunidant server-side functionality it is easy to rack use. Since the applicadon is

really implemented as a series of web pages on the server there arc ample opportunidics for scamlessly

integrating new content, as well as managing QFEs, etc. MS-PCA 1281622

CONFIDENTIAL

Microsoft- CONFIDENTIAL -5 Copyright © 1996 Microsoft Corporation

Web-Centric Productivity Documents

Programmability: Onc of the key dedisions we made in Office97 was to bundle the development
environment with the applications. One key decision we would make for this application is noc to bundle the
development environment. This application would still have a rich object model, in fact this would be a
primary design goal and leveraging Offia97 (code and APLs) is key. However, programming this application
will be done ouuside the application. Instead of writing 2 macro against 2 document, one is much more likely
10 write server-side code that manipulate the document or write 2 custom page that replaces the standard
interface with 2 more task-oriented interface. I realize this sounds pretty much like components everywhere
for zero cost, but separating out the development environment along with using the forms to build both the

application and custom solutions is an imperative.

MS-PCA 1281623

CONFIDENTIAL

AMECrosoft- CONFIDENTIAL & Copyright © 1996 Microsolt Corporation

