PLAINTIFF'S
2 EXHIBIT

2L

Comes v. Microsoft

From: Darryl Rubin
Sent: Thursday, October 22, 1998 5:46 PM
To: Scott Cottrilie
Subject: RE: Annotations
it2 ’ 2)
The tHypemaive Personal Viewers
Desktop.coC Memo.doc

Each of these two docs has sections that discuss topics related to annotation, including ways of creating them {various
Kinds of note taking, esp. in the viewers memo), viewing and indexing them, etc. Unfortunately since the memos cover
broader topics you'll have to hunt for the stuff that pertains specifically to annotation-related functions.

—Original Message——

From: Scott Cottrille

Sent: Thursday, October 22, 1998 5:17 PM
To: Darmyt Rubin

Subject: RE: Annotations

Hi Darryl, we spoke with you 3 couple weeks ago about annotations. I'd like to read the memos Bill
mentions below, where can I find them? Thanks,

-scott

~—OQriginal Message-—

From: Yoram Yaacovi ,

Sent: Thursday, October 22, 1998 4:34 PM

To: Scott Cottrille; Marco DeMetio; Jim Kott; John Scammow
Ce: Bruce MacNaughton

| Subject: FW: Annotations

FYL

Yoram

-——Original Message—

From: Bill Gates
Sent: Wednesday, October 21, 1998 7:44 PM
*To: Darryl Rubin; Jon DeVaan
Cc: Bob Muglia (Exchange), John Ludwig; Yoram Yaacovi; Eric Rudder; Nathan Myhrvold

Subject: Annotations
1 have atways thought doing ANNOTATIONS right is a huge value.

1 think there is sorre good work going on in the Dynamic Communities team. | would love to tout this as something
big IF:

a) We knew how to scale it and get something out of it before others clone it

b) It related to our browsef strategy and Office strategy.

1 am concemed about our lack of a company view on this. Its an area where Office has to show leadership.

Office has 2 kinds of annotations already - annotations in the document and annotations on a web server. Having
these be separate things is a great example of confusing complexity that people will never understand. However
the web server stuff is not very fiexible and no relation to the work going on in MSN.

There is also some work going on in Darryl's epad effort, and in research under Anoop Gupta and perhaps in the
paperless office area. Someone smart needs to pull this together.

Office has got to pick someone to be forward looking in this area and help us decide how to relate their work to the
MSN work and how to make it acceptable.

The best writing on annotations and its importance are the memos wrilten by Darryl which there has been very
little to no followup on.

”T1§-‘P‘CT1’37§§8T
1RGILY CONFIDENTAL

Annotations are a good example of something where we want a base level of functionality in the browser but a
much better level of capability to come in with Office. It gets easier when we have a strategic store that can help
(storage+ perhaps starting with platinum?).

_-Oniginal Message—

From: Yoram Yaacovi

Sent: Wednesday, October 21, 1998 11:18 AM
To: Bilt Gates

Subject: Innovations

Bilt,

| am now on the ebook team under Dick Brass and Steve Stone, and I'm aware of the talks about showing off the
RBG striping innovation at Comdex. It's really cool.

However, a little less than a year ago, when on the Dynamic Communities team, we created an innovation in 2
different space: the Web. The innovation allows peopie to post annotations to any web site, and let other people
view these annotations. As far as | know, no one has done this yet, and besides being a new and cool user
feature, it involves solving significant scalability issues {build a server infrastructure that will get hits for every Web
page you browse to, if you have the annotations browser bar open). | know that you've seen demos of it.

There are some behavioral problems with annotations (peopie can abuse it), but they are sotvable. And it's an
innovation at the level of ICQ. It's working, and you can go to r_x_t_tgﬂcmnmyﬁilx(o download the latest (M2) client.
We only recently started the patent process, SO this might be an issue.

| thought that this might be another option for us to demonstrate our innovation.

Yoram

MS-PCA 1378984
INCIILY CONFIDENTIAL

Darry! Rubin Microsoft Confidential 3/10/97

Deeper Web/Shell/App Integration:
The HyperActive Desktop

EETOQUELION +-rrevevaeennesasssnenscesssssss a7 T
Capsule Intro 1o Unified SHOTARE erevevverenssrmmmsssmsemsssss sisssssesssssssssmmssss s s
UISEE SCEIATIOS e e ssessse e o e oo
The Desktop.....cccoccveaees
The Shell Frame ...c..ooemmmeemmanemmsnesees
5.1 Shell Frame Elementsccoccveeeee
5.1.1 Control Panes.......
5.12 Clicat Panes

(VR SRV e

5.1.3 Pane Options and the Frameless Ul .. reeensaeneeenna . 21
S22 Navigation and SEaTCh....rommrmmerssessersocrsorsinss o 24
5.2.1 Previous/Next, Favorites, and History . . . 24
522 Navigation Panescocowceeseisereineness 26
523 Searching . U . .26
5.24 LUK FOTOWINE, <vrvers e esesrererrsesser s sssssse s sserss s s ssesssmm s s e s 28
5.2.5 Trackifg Panes......cceeuvemssmserssserssnsesmeessssoneees: rereerenessennnsaemaneasasasanens 29
53 Viewing eeeeeeerieennteseseansana st e e 30
LIV T -7 1111 SR S
5.5 Linking

551 Creating Links

552 Link TYPES ceovcaerrranseeesssmmmmassmsssasssnsossenes
553 Link Properties
554 External Links.......ccceeeee

5.6 Other Functions and Frame Seamlessness ..

6 The Personal Newsletter 42
7 APPHCAIONS e ceercecssrsnsssorrsaso s e o 47
PR S 49

MS-PCA 1378985
INGILY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

1 Introduction

In this memo 1 want to talk about extending the efforts we've made for unifying
the shell and browser and suggest how we can take these ideas further; how we
can:

e Further integrate apps and web browsing into the shell frame to achieve a
navigation/viewing experience that is both richer and more seamless

« Better exploit push model to reduce information overload

« Simplify information access and filing by support of unified storage

e Use rich linking to make collaboration and sharing inherent and convenient
features of the shell.

A couple trends motivate these ideas. One is that the PC is becoming a device
more for communicating, collaborating on and consuming content thanitis a
device just for producing it. The other trend is that the web is becoming the
primary metaphor for these consumption and collaboration activities.

The threat to Microsoft is that companies like Netscape and Lotus will be able to
offer web-centric “desktops” that users will prefer living in and using as their
launch points because they better support the user’s web-centric metaphor.

This is not hard for our competitors to do, because the amount of Jocal desktop
functionality they need to subsume isn’t that great (the Windows desktop isn’t
super rich, especially in the consumption/collaboration departments) and it’s easy
to design a set of HTML pages and controls that put a pretty nice face on the
existing local desktop operations. This is, after all, partly what we are doing in
Memphis.

The danger of competitive web-centric desktops is that they will be sold as
platform-independent shells, shells that have an especial affinity for Java apps
over native ones. This threatens the core of our platform and application
strengths.

The challenge for us, then, is to enrich the desktop in web-oriented ways 0 that it
is not so easy to replace, and so that running Windows-nalive apps under the
Windows-native shell-—especially Office—results in compelling advantages
compared to Java apps on a platform-neutral shell. The web/shell integration

“WS-PCE 1378386
2 JUGIILY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

work we’re doing in Memphis is a good first step, but there is much more we can
do.

In this memo 1’} describe how I think a set of next steps for evolving the shell Ul
for deeper web/shell/app integration and for richer exploitation of hyperlinking
and unified storage. I call this next step, somewhat jokingly, the “hyperactive”
desktop, for the way it exploits web integration and hyperlinking features. 1don’t
suggest this to be our official marketing term for the new feature set! But for
want of a better term I’ use it in this memo.

The hyperactive desktop builds on the ideas laid out at the start of this memo:
richer shell/browser app integration, push-centric UI, unified storage, and rich
linking. These ideas have been covered to varying degrees in several of my
earlier memos, including “Storage Unification and Webification” and “Beyond
Browsing” from last year, and “Unifying the User’s Navigation/Viewing ‘
Experience” from 1995.

What I want to do here expand on this material, with focus on the UI and user
experience as opposed to infrastructure. Where necessary I'll summarize key
points from the earlier memos but otherwise will avoid duplicating matenal. 1
especially encourage you to read the Storage Unification and Beyond Browsing
memos for much more detail and infrastructure discussion on those topics.

A couple other notes:

o While I cover a lot of material in this memo, my intent isn’t to set forth
everything I think we need to think through for a comprehensive “‘next UI”.
Particularly, there is already other Ul thinking being done, such as Eric
Michelman’s work on web UI, which dovetails nicely with the ideas discussed
here.

e The proposals in this memo are undoubtedly more than we’d do in a single
release, and given the nature of UI design, people will find some ideas they
dislike. 1believe what I outline here is quite amenable to release subsetting
and to alternative choices at a Ul design level. My main goal is to express
what concepts and features the Ul should embody, and I'm less concerned
about how closely the detailed realization matches what I say here.

2 Capsule Intro to Unified Storage

Some of the UI enhancements I'll discuss in this memo concem ways to exploit
unified storage. For those who haven’t read the storage unification memo, here’s
a summary of the storage model proposed there. The storage memo contains
much more information on the storage features, api’s, implementation, and how 1
envision unified storage being used.

78987
MG-PCA 1378950

o

JNGIILY CONIDX!

Darry! Rubin Microsoft Confidential 3/10/97

Note that much of the Ul discussion in this memo does not depend on unified
storage; many of the features I propose are valid even in time frames where
unified storage doesn’t exist, although implementing them is made much easier
when unified storage is available.

Unified storage enhances the file system to have these features:

e Three kinds of objects
~ Folders
— Files
— Links
e Propertics
— Al file system objects have properties: folders, files, and links
— OLE property model (multiple property sets with properties)
— Network-wide property indexing and query
o Uniform container model
— Folders can have storage streams in addition to children
— One storage stream of a folder is its content: the HTML view of its
contents
— Files can have children (links, other files, and in the richest
implementation, even folders)
e Rich linking
All forms of links, including HTML hyperlinks and OLE links,
represented as explicit file system links
— Links can be stored...
Internal to (children of) the file or folder containing them
External (stored separately), allowing links to be added to unwriteable
objects
- Separate source and destination anchor properties
— Multiple link types (hyperlinks, annotations, responses, footnotes...)
e Advanced storage features :
_ Read/unread tracking for files, folders, links, and annotations (the setting
. of read/unread is managed by the UI, not the store)
Single instancing for efficient message and app resources storage
Scripting of document and folder objects for customized storage behavior
— Replication
— Whole file caching (Coda)
— Online backup/restore
e API's
_ Win32 file calls supported compatibly
— Full set of COM api’s based on OLE property and storage interfaces, with
extensions)

[

Unified storage creates opportunitics to simplify and empower the UL First, it
lets objects of all kinds be treated the same way. Documents, web pages, mail,

4 “MS-PCA 1378988
HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

newsgroup messages and appointments are all files. File folders, schedules, mail
folders, newsgroups, and web siles are all folders. This means the same Ul
actions for creating, deleting, copying/moving, viewing, editing, and adding
comments to documents will work for all these objects. It also means that the
various kinds of objects can be stored together in the same folder, or returned as
hits int the same search.

Tbe Ul need no longer have separate “clients” for documents, mail, schedule,
web, and so on. The shell’s folder “app” becomes a universal client.

The uniform container model also means that files and folders can be treated in
much the same way. Both folders and files have content and children, and so both
the content and children of either kind of container can be manipulated via
common Ul mechanisms. (The content of a folder is the authored view of its
children, whereas the children of a file are its attachments and embeddings.) The
uniform container model also makes it possible to have a completely seamless
web view, where everything looks and acts like a (potentially editable) web page.

Having a uniform way to represent and store objects means that a common set of
mechanisms can be used for security, replication, caching, backup/restore,
querying, and so on. This simplifies not only the infrastructure but also the U],
because now a common set of Ul mechanisms for these tasks will apply to many
kinds of objects.

Finally, the rich linking features of unified storage make it possible to apply links
in a very broad way. Links can be added into the objects they link or stored
separately from either object; the latter case lets users link and annotate objects
they can’t write and also maintain personal webs of links and annotations that are
not seen by others.

Links can also be used as a general mechanism for implementing annotations, -
responses, and discussions, meaning that these become shell operations that are
common across all kinds of objects, including folders.

See the storage unification memo for 2 much more detailed discussion of the
linking and other storage features.

User Scenarios

In this section 1’1l walk through a rather extended scenario of using the
hyperactive desktop, interspersed with some design explanation as required.
While I cover quite a bit, I don’t intend to cover all the features of the hyperactive
desk or to explain how they all work (I"ll cover more of this in subsequent
sections). The themes I intend to bring out are:

~ MS-PCA 1378989
s HIGHLY com ,?L

Darryl Rubin Microsoft Confidential 3/10/97

e A personal newsletter or a related metaphor based on the push model can
become a primary tool for delivering and organizing a user’s information. It
attacks the information overload problem by giving the user a way to
overview, orient, and focus.

« An enhanced, “frameless” shell frame can make navigation and viewing
between and within documents more seamless, more visually attractive, and
Jess cluttered. The shell experience becomes more document-centric, with
Jess distinction between “shell” versus “app,” “window” versus “in-place
object”, “web/internet” versus “desktop/iocal world”.

e Rich search, viewing, and linking mechanisms make it possible to find,
organize, assimilate, and share information more easily, and with less regard
to type. Users can perform the same set of operations, the same way, on
diverse kinds of information (documents, messages, appointments, folders,
newsgroup threads, etc.) Most importantly, objects of diverse types can be
collected together the same folder, meaning users are free to organize and
view information based on topic instead of type.

As in the Memphis Active Desktop, the hyperactive desktop is just an HTML
document.

So, the desktop is an authorable page that can contain arbitrary HTML elements,
including embedded frames showing other HTML pages. It has task bars, menus,
and toolbars that can be docked along screen edges or free-floated. And it has the
desktop icons.

Compared to Memphis, there are a number of generalizations and enhancements
in how all the various desktop elements are ireated and how richly they can be
authored. 1'11 cover these differences in detail later; the main point to make for
now is that Memphis desktop’s background and icon layers are combined into a
single, fully authorable layer that can host both icons and embedded frames; the
UI differences between background and foreground manipulation and behavior
are eliminated.

Prominently featured on my desktop when I come in to work is a thing called my
Personal Newsletter. This will typically be one of the windows in the desktop. It
may well take up most of the space on my desktop, at least to begin with.

The newsletter is basically a personalized web document. The first page is like
the front page of any newsletter—it has a short table of contents in one column
and other columns for the highlights in major categories of interest: Hot Mail,
Next Meetings, Top To Do’s, Your Projects, Related Projects, Company and
Industry News, Interesting Articles and Reports, and so on.

Because it pulls together so much information in an attractive, easy 10 skim and
easy to drill-down form, the newsletter is probably the major center of my focus
for much of the day. From it] can

MS-PCA 1378390

6 HIGHLY CONFIDENTIAL

Darry! Rubin Microsoft Confidential 3/10/97

e Scan the hot mail items and link to them or to my entire inbox

e See my next few meetings and key to-do items for today and link to my
calendar '

e See a summary of recently changed project documents and status information
with change abstracts, and link to those documents of interest

« Review recent company and industry news capsules and research abstracts
and link to the entire full text

The newsletter is also fun to read, because it is typographically nice and makes
effective use of eye candy (graphic images and backgrounds). It may even
contain a few pertinent cartoons or other diversionary material. Like any good
publication, the front page provides an overview of the entire contents—including
lead paragraphs from the key “stories”—with supplementary pages (linked from
the front matter) giving more detail on each topic. This makes it easy to skim and
prioritize my focus.

For example, a front-page “story” about a project document change would have
the abstract of the change (taken from the document), plus a link to the changed
document. (If a lead is too Jong to fit in a paragraph or two, it is spilled into a link
page, or scroll bars are available.)

The newsletter is actually pretty smart about what information to show me. This
is because it knows a lot about me and my company. It knows my position, the
company org chart, what projects I work on or follow, what the project workflows
are, and so on. It also knows the topic areas (keywords and concepts) I'm
interested in, plus what topic areas each project is concerned about. 1t has learned
some of my needs and interests from specific subscriptions I've made, but others
it may have deduced through heuristic and feedback mechanisms I’11 discuss later.

Whenever a file or database changes, my user profile tells the storage system
enough to let it rank that change for its relevancy to me and update my newsletter

if appropriate. (If the newsletter carries cartoons, it will even know my favorite
cartoonists.) '

Because it draws from a world of changing information on the corporate intranet
and the intemnet, the newsletter is dynamic document. To keep the changes
orderly, it will update itself at regular periods (morning edition, noon edition,
afternoon edition) with backlinks to previous editions. (Any given “edition” is,
internally, just a list of information links, which the newsletter engine
dynamically formats according to an authored template.) The edition backlinks
could be shown on an “index of past issues” page of the newsletter.

So, I use the newsletter to orient myself on the day’s work and to link me to the

detailed information 1 need in the course of the day. Think of this as Qutlook
recast to be topic- rather than type-driven. Because the newsletter is both a push-

. ~HS-PCR 1376991
HKGHLY CONFIDENTIAL

Darmryl Rubin Microsoft Confidential 3/10/97

* Scan the hot mail items and link to them or to my entire inbox

* Seemy next few meetings and key to-do items for today and link to my
calendar

* See a summary of recently changed project documents and status information
with change abstracts, and link to those documents of interest

* Review recent company and i ndustry news capsules and research abstracts
and link to the entire full text

The newsletter is also fun to read, because it is typographically nice and makes
effective use of eye candy (graphic images and backgrounds). It may even
contain a few pertinent cartoons or other diversionary material. Like any good
publication, the front page provides an overview of the entire contents—including
lead paragraphs from the key “stories”—with supplementary pages (linked from
the front matter) giving more detail on each topic. This makes it easy to skim and
priontize my focus.

For example, a front-page “story” about a project document change would have
the abstract of the change (taken from the document), plus a link to the changed
document. (Ifa lead is too long to fit in a paragraph or two, it is spilled into a link
Page, or scroll bars are available.)

The newsletter is actually pretty smart about what information to show me. This
is because it knows a lot about me and my company. It knows my position, the
company org chart, what projects I work on or follow, what the project workflows
are, and so on. It also knows the topic areas (keywords and concepts) I’m
interested in, plus what topic areas each project is concerned about. It has learned
some of my needs and interests from specific subscriptions I’ve made, but others
it may have deduced through heuristic and feedback mechanisms I’1] discuss later.

Whenever a file or database changes, my user profile tells the storage system
enough to let it rank that change for its relevancy to me and update my newsletter
if appropriate. (If the newsletter carries cartoons, it will even know my favorite

cartodnists.)

Because it draws from a world of changing information on the corporate intranet

and the internet, the newsletter is a dynamic document. To keep the changes

orderly, it will update itself at regular periods (morning edition, noon edition, 0

afternoon edition) with backlinks to previous editions. (Any given “edition” is, , ¢
internally, just a list of information links, which the newsletter engine '
dynamically formats according to an authored template.) The edition backlinks

could be shown on an “index of past issues” page of the newsletter.

So, I use the newsletter to orient myself on the day’s work and to link me to the
detailed information I need in the course of the day. Think of this as Outlook

recast to be topic- rather than type-driven. Because the newsletter is both a push-
T e e,
PCA 1378992

o 'Y CONFIDENTIAL
; M5~ PCA 1378997
HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

or on the surrounding background of the desktop. Menus, toolbars, and window
controls are auto-hidden; I access them by moving the mouse pointer close to the
relevant window edge (if I want [can set all window frame elements to unhide
together, or to stay locked on, or even to free float outside the window).

Using the spinner on the Intellimouse, I can view and scroll documents without
ever needing to see the window frame at all.

This “frameless” desktop is more attractive and legible than a traditional
windowed desktop because it is less cluttered. It also simplifies things by using
the same control frame design for embedded objects as for windows.

With its seamless support for many information types, you might think I'm saying
that the shell bundles most of Office. Not at all. What it mainly does is provide
the homogenous framework into which Office functions comfortably slot. If you
don’t have Office, you can still navigate, view, and edit, but with a much poorer
feature set (think Wordpad versus Word, for example). Again, the analogy to
Wordmail is apt, but now, it is all of Office and not just Word that serves to
augment the shell.

But, unlike today’s Office, I no longer think of running apps or opening
documents. I just link from one place to another.

Even the idea of File Open essentially goes away. File Open just links me to a
navigation page with (authorable) links into the storage system. (Think the My
Computer window, except prettified with HTML and with possibly some context
dependent links into the user’s storage.) I can link forward from the File Open
page to the thing 1 ultimately want to open, or g0 “Back” if I change my mind.
Being a case of navigation, it’s modeless.

Some new features of the shell make this process of navigating around and going
“pack” much easier.

To start with, common operations like Search and File Open (by default) open 2
vertical split pane in which the search or file open contents appear. This pane,
called a navigation pane, works much like the hierarchy pane in the file explorer
and the search pane in Memphis. You can click on links in the navigation pane
both to navigate through the search results and to open views of the selected item
in the main display frame. This is also rather like the internet newsreader’s
vertically split view with threads on the left and message content on the right.

Navigation panes are good not only for search and file open, but also for
documnent and workbook outlines, site maps, and any other kind of navigational
<chematics, from storage hierarchy views to graphical topic maps and VR
landscapes. The TOC column of the Personal Newsletter is (by default) ina

~ MS-PCA 1378993

9 HIGHLY CONFIDENTIAL

Darry! Rubin Microsoft Confidential 3/10/97

navigation pane. All of these are things that have links you want to keep handy
for switching among a set of related pages or documents.

You can also manually split the main display pane, which opens a navigation pane
on the content under view so that you can use any of its internal links for
navigation. For example, opening a navigation split on “Fred’s Favorite Links
Page” would let me keep Fred’s links in view in the left pane so 1 could quickly
explore them without always having to go “back back back” to Fred’s page.

Multiple levels of navigation split could be made to work, but I won’t address that
here.

Anyway, I'm delving through my morning newsletter, now in the Your Projects
section and checking out a document that has come back to me from review. I
have the newsletter TOC in the left split pane and the Your Projects page in the
right. High up in the latter’s Recent Changes column is an unread item, “My
Modest Proposal” with the notation, “Has received comments”. I click on the
document link and the document opens. '

I want to peruse the review feedback, so I choose the Comments (e,
annotations) view from the view menu. This opens a view similar to Word’s
Comments view, in that it has a contents pan¢ and a comments pane, but there is
also a third pane: a navigation panc showing the document outline, and having
comment nodes displayed as leaves. This makes it easy to navigate the document
and to check out where the comments are. :

The lower split pane containing the comments is called a tracking pane, because it
tracks what’s shown in the content pane. Tracking panes can show a vanety of
things, including comments, footnotes, link previews (lookaheads), and graphical
topic maps.

‘]’ll admit that with three panes up, the document window may look a little
cluttered to some people. There are a few things I could do if this bothered me. 1
could of course close either the outline or the comments pane. (Remember,

hovering the pointer on a comment will still display it.) Alternatively, I could set
one or both of these panes to auto-hide. Or | could detach them to free float.

For these various options, think “Memphis taskbar”, which has the same kinds of
options, all available via drag/drop of the frame itself. In the hyperactive desktop,
we generalize so that any navigation or tracking pane can be made to hide, auto-
hide, free float, or dock along any window edge. In fact, taskbars then become an
instance of these generalized pancs; the taskbars are accessory panes of the main
desktop frame.

The three-pane view is nice because it makes it easy to navigate through a
document’s comments sequentially or in any order in relation to the document

“"MS-PCA 1378994

10 HiGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

outline. Better still, I can change view settings on the outline pane t0 filter on
various response criteria. Each comment node is an object with properties, sO I
can apply all the normal viewing operations here. For example, comments
include properties for the responder’s name and the type of comment (question,
correction, suggested change, issue, etc.). So, I can filter for just remarks for a
given person, of just questions ot issues; or I can categorize the comments so that
the outline groups all questions together, all issues together, and so on.

One other point about comments: unified storage lets us implement comments via
links, meaning that they needn’t be contaiped inside the document itself. People
can comment on documents without having write access to them.

Everything I've said about comments applies to the other kinds of items you can
view in a tracking pane—footnotes, hyperlinks, etc. The same kind of three-pane
view will show any one of 2 combination of those objects.

Well, I’ve read my newsletter and my first major task for today is to do some
research on biometrics. I'11 need to pull together some information on this topic,
boil it down some, and run it by some coworkers for discussion.

I use the shell’s search button to open 2 pane containing a search form.

The search form gives me ways to conduct searches spanning a variety of scopes:
within the current content frame (document or view) only; or within other
physical scopes like local machine only, intranet only, nationwide, or worldwide.
For my search on biometrics I'll do a worldwide search.

I want to include in my search literally anything 1 can get my hands on that relates
to biometrics: documents on the subject, email messages, newsgroup threads, web
pages. The search panc probably has a way to specify the types of information to
cover, but let’s assume that in this case the default is to cover all types.

Since I'm searching a scope outside of the previous document, the search results
come back both as the current document in the content pane, as well as a hit list in
the navigation pane. This is quite useful, because anything in the content pane 1s
a document that can be edited, annotated, printed, saved, and so on.

What I get back from the search is a results document—actually a folder of search
hits (links), but because folders are HTML documents, it can look nice; for
example, it can be a tabular display providing information (properties) about the
hits, including possibly 2 thumbnail. Suppose 1 get back lots of hits; I'll now
want to do some fancy viewing to cull through and narrow down what to look at
next. For this, the shell gives me all Notes-like features for sorting, filtering,
categorizing, and aggregating oo properties in a list, as well as for calling up
predefined, pamed views that are supplied by the container (in this case, the
search folder).

" MS-PCA 1378995
HIGHLY CON%]?)Z’-_‘??TMSSL

Darryl Rubin Microsoft Confidential 3/10/97

These viewing features will work for any list, table, or hierarchy, in any pane.
They’re broadly useful, since much information is presented this way, whether it
be lists or hierarchies of documents, document sections, spreadsheet ranges, mail
and discussion messages, links, comments, footnotes, appointments, and so on.
The review document example above showed where it would be useful to use
viewing features in a navigation pane (the document outline with comment
nodes).

In my biometrics research I'm specifically interested in eye tracking, so I'll filter
my search results for those keywords, sort by relevancy rank, and subsort by date.
Next I’ll categorize the view on Subject/Title to see if any pattems emerge there;
then, say, on item type, SO that things like email messages, documents, and web
pages get grouped with their own kind—makes it easier to scan what the mail and
documents are about. Then I'll put the view into thread view to crawl through
some of the mail and newsgroup threads.

Again I'm navigating between different kinds of information within the single
shell frame. There’s no need for secondary windows to open unless that’s what 1
choose. Throughout this process, the use of a navigation pane to hold the search
results makes it much easier to explore and refine the hit list and check out the
hits.

OK, so I've found a selection of items of different types [want to keep, T’ll copy
those to a new folder, “Biometrics Research” (or simply delete out of the search
results folder the items I don’t want).

As I review some of the found documents, I annotate them and make referential
cross links for later reference. A single drag/drop mechanism lets me make links
between documents, or between anything, including mail messages, newsgroup
items, appointments, and web pages. The shell lets me treal all kinds of
information uniformly. Also, it doesn't matter if 'm making links in documents 1
have no write access 10; the shell 18 creating extemal links for me in those cases.

1 find a few things 1 want to respond to, and not just some of the email and
newsgroup messages. For those cases it’s obvious: I select “Reply” on the
context menu and get a properly addressed send note. But I also want to respond
to one of the documents I read. “Reply” in this case brings up a send note
addressed by default to the document’s author, and with a link to the document
automatically inserted.

Alternatively I could add comments to the document as I read it, and the author
would be notified of the comments via their personal newsletter. The author
could then comment on my comments, with my newsletter notifying me about
those, and we'd end up conducting threaded discussions within the body of the

“MS-PCA 1378996
12 HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

document itself, via chains of comments. (Section 6 discusses this collaboration
scenano in more detail).

Next, | want soméone else to review the entirety of this research. I drop the
whole research folder into a mail message. Before sending, there are some
comments 1 want to make on this collection of material, which 1 do by annotating
the folder the same as | would a document. This is possible because folders, too,
are HTML documents, and so support comments, footnotes, etc. (Think of it this
way: the web view 1s now editable.)

On the other end, the recipient can open the folder from within the email message,
or drag it elsewhere in their storage hierarchy. The annotations I made will show
up in views on the folder.

Perhaps some of the links 1 mailed to my colleague are to documents in my own
storage tree. This is OK; assuming this is 3 Coda world, all my files exist on
servers for which share points are automatically established and user-level
permissions are in force. When 1 mailed the links folder, the mail system checked
the recipient’s permissions to the documents referenced and where necessary
(should be rare) asked me if it’s OK to grant the needed permissions. I never

need to do anything a priori to share stuff; mailing a link is all it takes.

The mail also checks whether the recipient lacks connectivity to my storage tree,
if necessary attaching the referenced documents to the mail message.

Well, this has been a long scenario. Time for lunch?
To recap, the key features illustrated in this section were:

e Use of a dynamic, push-model “newsletter” that overviews the day’s work and
acts as a convenient point from which to dnll down.

e Seamless navigation and viewing through information of all types within a
single shell/browser window.

e “Frameless” windowing for less Ul clutter and more uniform treatment of
Jinked and embedded objects.

e Ability to organize and store information without regard to type (afolderis a
folder is a folder)

Availability of rich Notes-like viewing features for any collection.

o Shell/browser enhancements via navigation and tracking panes to make it
easier to navigate and view information, and to unify some currently disparate
navigation/viewing features.

« Use of rich linking, threaded views, and intelligent “reply” features to make
sharing and collaboration easier. ‘

The rest of this memo will go through these features and others in more detail.

/ 7_\
“pep 157899
1 m‘g?n,‘: CONFIDENTIAL

Darryl Rubin Microsoft Confidential) 3/10/97

4 The Desktop

In this section I mainly want to cover how the hyperactive desktop differs from
what Memphis has done. This is not meant to be a complete discussion of the
desktop features and what enhancements we’ll want to include.

Memphis provides the first step toward a web-centric desktop by introducing an
HTML background that can contain frames showing other HTML pages. The
background is basically a window that has been made full screen and frameless,
and which can contain embedded windows.

Several of these backgrounds can be open at once, each on its own nontransparent
Z-plane (thus, only one is visible at a time). One of these is the default desktop
background, and the others are called “channels™. App windows that the user
opens exist on their own Z-planes, so they can be displayed on top of a

background (desktop or channel) plane.

The rough spots in Memphis are that frames on an HTML background are treated
differently from normal windows. Nontraditional handles are used for moving
and sizing them, and they cannot be minimized. If you click on a link ina
background frame, it opens a new window that is not part of the background (you
cannot navigate within the same window frame). You switch among the channels
using a special channel bar.

There are also a lot of desktop elements that cannot be authored via HTML,
including the icons and task bar. These are each implemented as separate non-
authorable frames: a transparent overlay for the icons, and 2 dockable, auto-
hideable frame for the task bar.

The hyperactive desktop makes all these elements HTML-based and eliminates
the special treatment of the background planes and their embedded frames.

As in Memphis, the screen will support multiple background Z-planes, plusa
plane per floating window. Unlike in Memphis, the background planes aren’t
special in any way in terms of what you can display there. You can expand any
window into a background plane, meaning that it takes on a frameless, fullscreen

appearance.

The main thing you want in 2 background plane is the default desktop. This is
implemented as a folder, much as it is in Memphis. The children of this folder are
the various objects that are “on” the desktop. In addition, the folder has a stream
of HTML content that defines the authored appearance (the web view) of the
desktop. You can of course display other folders or other documents as
background planes too. These would be the equivalent of Memphis channels.

" MS-PCA 1378998
14 HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential : 3/10/97

So far this probably sounds similar to Memphis. What’s different is that channels
are no longer anything special, they are just normal folders or documents that
have been expanded to the fullscreen, frameless display mode. Also, the desktop
icons (the children of the desktop) now have a fully authorable appearance.
Rather than sit on a separate plane, the icons are actually part of the desktop
background, and the author and decide any placement and visualization that’s
desired.

Designing the desktop folder’s appearance——or the appearance of any folder for
that matter—works this way: you open the folder’s web view and use normal
HTML authoring tools to design its content. You then drag objects into the view,
which adds them to the folder. By default, the dropped items will visualize as
normal icons at the drop coordinates, but you can now change this—editing the
icon image and properties to change its appearance and behavior. (These edits
actually change properties on the child object.)

Why is this useful? Because you can line up the icon with other background
elements. You can make its style consistent with the rest of the background. You
can make it a button or other control rather than an icon.

Another thing you can do is make the child visualize in-place as an open frame.
How? Again, just by editing the properties of the object, which include a set of
visualization properties (see Section 5.2.4). This creates the equivalent ofa
Memphis background frame. However, you can now do this for any kind of child
object; and do it just by diddling properties rather than using a spécial authoring
mechanism. You can turn an open frame back into an icon the same way.

And, the user can do this at runtime, expanding icons into frames and vice versa;
it’s not just an author-time thing.

Moreover, because there’s nothing magic about a folder being in the
background—it’s just a view where you make a window fullscreen and turn off
the frame—everything I've said about icon authoring and open frames applies to
the normal, in-window view of a folder too. That is, any folder can have a fully
authored view, with authored icons and open subframes.

Think of this the full realization of the “folder as document” model, where like
any other document, a folder has an authorable content that can include in place
objects. The open frames are those objects. One implication of this is that we can
use the same move/resize Ul for both the in-place object and the deskiop frame
cases; we no longer need a special one for the latter.

Not all folders will be manually authored of course. The web view for other
folders will come from a default HTML template based on, say, the current
Memphis web view of a folder. Another case that needs to be handled is that of a
user dropping an object on a folder icon. Here, a child is being added but not

“ MS-PCA 1378999

15 HICHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential . 3/10/97

explicitly placed in the web view image. The software will need to compute a
reasonable placement in this case. The folder’s web view could have a region
designated by the author for «ynauthored” icons to be auto-placed, or the software
could just look for any free background space starting in the upper left quadrant.

One problem with rendering embedded frames in normal folder views is that it
can slow down operations like traversing the folder hierarchy. But this 1s no
different from what happens when you're navigating a set of web pages, some of
which have large embedded images. IE already handles this case—the solution is
to render them asynchronously and allow further user input in the meantime.
Folders, and documents in general, can work the same way.

This folder-as-document model answers a couple questions you may be
wondering: First, do embedded frames show up in the task bar? No, just as
frames embedded in documents don’t. This behavior is also consistent with what
Memphis decided. However, the document itself—including folders or
documents expanded into background Z-planes—will show up in the task bar. A
channel bar is no longer needed (though we may choose to keep it for other
T€asons).

The second question is, can you minimize an embedded frame? No, just as you
cannot minimize frames embedded in documents. What you can do is change the
frame properties to make it display in place in a different way, such as an icon.
The notion of maximizing and minimizing only applies to things that exist as top-
level frames (normal windows); i.e., to things that can appear in the task bar.

In Memphis, if you touch a link that is in an embedded frame, you get a new,
floating window. In the hyperactive desktop, this doesn’t have to happen; the link
can navigate in place, and by default, does. If you’d rather get a new window you
perform a Ul modifier when you click the link (see Section 5.2.4). A given frame
can also have properties set that change the default linking action to “new
window”.

As for.icons, touching one of them will launch a new window, though again, this
is a matter of properties and available Ul modifiers that control that behavior
(with the alternative being to navigate the frame that contains the icon to the new
place—not a commonly useful option).

One problem with allowing arbitrary folders and documents into the desktop
background is that some may be too big for the screen. That is, you may need to
scroll the background. The best way to handle this is via auto-hidden scrolling
controls. These could be hosted on the task bar and/or on bars of their own.
Another option would be to turm on the background’s frame, in which case the full
complement of window controls, menus, and toolbars becomes available.

MS-PCA 1379000

Darryl Rubin Microsoft Confidential 3/10/97

[said at the start of this section that other desktop elements like the task bar and
channel bar are HTML-authorable elements. in fact, they are folders whose
children are the objects they contain, and whose appearance is governed by the
folder’s HTML stream. (A nice byproduct of this design is that control panes

become things whose contents you can view using normal folder views, including
the ability to search them.)

With this kind of approach, the only thing that makes the channel and task bars
special is that they run in special frames that are always accessible, no matter
what’s on the display. That is, these frames have the Memphis functionality that
lets them dock along any screen edge, optionally auto-hide, or free float.

But even these features needn’t be special-purpose. The shell can have another
folder, the “screen” folder, in which screen level frames like these are hosted (as
links or children). Properties on each such item would indicate its settings
regarding docking/hiding/ﬂoaﬁng. 1t them becomes possible to associate arbitrary
frames—for example, content windows and folders—with the screen and let them
dock, auto-hide, or float. ’

To recap, the hyperactive desktop changes the desktop model from Memphis in
these ways:

o The desktop as well as the task bar, channel bar, and channels are all folders.
_ Their appearance can be HTML.-authored '

— Their child objects can be manipulated via normal shell UL
— They can be viewed with normal folder views and even searched

e Any folder or document can be set to display as a background plane; that is, as
fullscreen and frameless. A new Ul control will be needed for this (“super
maximize”).

» The appearance of a folder’s children is fully authorable. They can be set to
display as icons, buttons, or other Ul elements. They can also be set to
display as embedded (in place) frames.

« Embedded frames work like in place frames in a compound document. In
fadt, these are exactly the same thing, and use the same UI for move, resize,
properties, etc.

o Every normal window, including those maximized as background planes,
appear in the task bar. (Embedded frames don’t appear in the task bar.)

o All frames can be set so that link navigation occurs in-frame or opens a new
(floating) window.

« Nonembedded frames support properties that control their display behavior
_ Whether the frame docks or free floats

_ If docked, whether the frame auto-hades

— If floating, whether the frame is always on top

~"MS-PCA 1379001
17 HIGHLY CONFIDENTIAL

Y

Darryl Rubin Microsoft Confidential 3/10/97

5 The Shell Frame

The hyperactive desktop extends what Memphis has done for web/shell
integration, both by integrating still more web functionality into the shell and also
by extending this integration to applications as well. The gives the user a2 more
seamless experience in navigating, Viewing, and manipulating all kinds of
resources: documents, web pages, mail, discussion groups, appointments, and so
on.

It means that navigating from one kind of information to another, such as by
clicking a link, never requires that new windows be spawned; as in a web
browser, the linked-10 information just appears in the current window (unless the
user specifically wishes a separate window for it). The user can now focus
exclusively on where they want to go and what they want to look at or search for,
and needn’t be concerned with differing tools or windows needed to accomplish
those tasks. :

Further, the deeper web/shell/app integration means that a fairly rich set of
operations can be made available for all kinds of information; for example, a set
of broadly applicable navigation and viewing options, as well as editing, printing,
and collaboration functions.

You can think of the model for achieving this as being Wordmail++. That is, the
shell will offer a frame with a bunch of standardized UL, and with shell/app frame
negotiation to allow apps to fill the client area of the frame and augment the frame
Ul as needed. What is different from today’s app/shell negotiation model is just
{hat the standardized frame Ul is richer, as is the set of things that can be
negotiated.

That being said, it’s also a goal of the new shell frame to avoid a cluttered Ul, let

alone a Ul where a big percentage of the frame Ul changes every ume you click a
link. The new frame therefore has features to address these problems.

Considering how much richer the shell frame becomes, you may wonder if I'm
saying that we end up bundling much of Office functionality in the shell. No.
What the shell frame does is provide the set of “compartments” into which the Ul
components of Office and other apps can slot. Windows itself would ship as it
does today with a set of applets, like the standard browser, simple mail and text
editor components, and so on. Office would replace or augment these as

appropriate.

1’1l now look at the features of the shell frame in more detail.

MS-PCA 1379002
HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

5.1 Shell Frame Elements

5.11

The shell frame accommodates all the elements you traditionally think of for an
app. It hosts menus, toolbars, scroll bars, a status bar, and client (content) areas.

All these things are instances of one basic thing: a pane. All panes share these
features:

e The have HTML-defined content

e They can be hidden ot revealed . .

« They can be docked along any window edge, free-floated, or dropped into a
menu, toolbar, or other control pane

o They can be set 1o auto-hide, with a variety of settings controlling the
hide/unhide behavior (see Section 5.1.3)

e When floating, they can be set to be “always on top”

e Where applicable, they can be moved and resized

Control Panes

Ul elements like menus, toolbars, and the status bar are called control panes.
There can be any number of these, but of course the shell will define 2 standard
set of them that forms the framework of the Ul (e.g., amenu bar, toolbars for
navigation, filing, and formatting, etc.) ’

Via the app/frame negotiation protocol, applications can dynamically create,
inspect, and edit control pane contents and properties as needed to customize the
frame UL Typically, apps will just insert items into the existing, well-known
control panes and add their own additional panes. This is basically like today’s
frame negotiation, but with more of the frame elements subject to negotiation.

Where applicable, users can customize control panes by direct manipulation of
their contents; for example, by dragging around menu items and controls.
Memphis has already begun to permit some direct manipulation of the Start menu,
and Office has done some of this for toolbars, so all I'm saying is we combine
these capabilities and make them general for all control panes.

Client Panes

Panes that show the content of documents and views are called client panes.

' There can be any number of these, but the typical maximum will be three. 1 won’t

discuss cases with more than this.

There are three kinds of client panes: content, navigation, and tracking panes.

MS-PCA 1379003

19 HIGHLY CONFIDENTIAL

Darry! Rubin Microsoft Confidential 3/10/97

Content panes are where views and document contents are displayed. Typically
there is only one content pane, of else two if the user has split the pane.

Navigation panes are where things like search hit hists, document outlines, site
maps, filing hierarchies, and other navigational aids are displayed. They are a
generalization of IE4’s search pane. Navigation panes are a kind of content pane
that has the following special linking behavior. Clicking on a link in a navigation
pane causes the shell frame to navigate to the linked content. This causes all
panes except the navigation pane 1o update according to the content that was
linked to.

There is one exception to this behavior: if you click a link that navigates within
the scope of the navigation pane information (e.g., “Next 10 hits™), then the
navigation pane updates but the other frames do not.

Together, these behaviors of links in navigation panes make them useful as tools
for exploring material based on a set of search hits or on an outline or map of the
material itself. Navigation panes are created either inherently as part of choosing
a named view (see Section 5.3) or by using a splitter control. Their default
presentation is as a vertical pane docked on the left edge of the shell frame (left

split pane).

Tracking panes are a generalization of Word footnote and comment (i.€.,
annotation) panes. They are where things like footnotes, comments, link previews
(look ahead), and context maps are displayed. A tracking pane behaves like a
content pane that is sync’d to another pane; as the other pane is navigated or
scrolled, the tracking pane will update to reflect the range of material currently
shown in the pane it slaves from. The default presentation for tracking panes is as
a horizontal pane docked on the bottom edge of the shell frame (horizontal split
pane).

Tracking panes can display information in either of two ways.

o Range of items. The tracking view is a list of the tracked items that are visible
in the tracked panc. An example is the Word footnotes and comments view,
which displays multiple items at a time. This mode of display is, obviously,
most appropriate where the items being tracked have modest size, and where
the tracked pane doesn’t have too many in view at once.

o Singleitem. The tracking view shows only one item at a time—the currently
highlighted item in the tracked pane. This mode of display is most
appropriate for hierarchy views, where the tracked pane shows a list or
hierarchy, like the contents of a folder or discussion group. The tracking pane
shows the content of the currently highli ghted item.

e ——————

“"MS-PCA 1379004

20 HIGHLY CONFID!

Darryl Rubin Microsoft Confidential 3/10/97

A tracking pane can in principle track any other pane, even another tracking pane.
Consider the example of a footnotes pane, where there are comments on the
footnotes, and so you have a separate comments pane to show those.

While the infrastructure can easily support multiple panes tracking other panes n
any arrangement, at U level we need to simplify the capability to keep it
comprehensible. There are several options from very restrictive to less so:

e Allow only a single tracking pane that can only track a content pane, and can
only be shown if there is one content pane (i.e., content pane isn’t split). This
is the Word97 model. ‘

e As for the previous case, but allow tracking when there are split content
panes. The tracking pane will track whichever content pane has (or last had)
the focus.

e As for the previous case, but allow multiple tracking panes up to some limit.
(e.g., two).

I prefer the third option because I think there are cases where it’s very useful to be
able to track two kinds of entities at a time, €.g., comments as well as footnotes,
or link lookaheads as well as a context map.

Pane Options and the Frameless Ul

A goal of the shell frame is to provide a visually simpler and less cluttered Ul for
the user, even though it is trying at the same time to host fairly rich app Ul
controls and advanced features like navigation and tracking panes.

This is done by supporting options for how and where panes display—the
docking/floating/hiding options listed at the start of Section 5.1. Basically, this
does for panes in general what Memphis has done for the task bar in particular,
and what Office has done to slightly lesser extent with its toolbars: implement
direct manipulations to let the panes be dragged along any boundary, where
they’11 dock, or else outside the frame altogether, where they’ll free-float; plus
implement properties to control hide/show/auto-hide.

Obviously, by hiding nonessential control panes and auto-hiding others, you can
get rid of a lot of UI clutter while still making the UT accessible when needed.

The ultimate Ul simplification occurs by hiding all but the most essential control
panes and making the rest auto-hide along the frame edge where they’re docked.
When this is done, you end up with essentially a “frameless” content pane.
Content frames then look more like pieces of paper on the desktop than like
windows, an effect which can be heightened by the right graphics design along
the frame edges (i.e., minimal border and a very subtle, diffuse shadow).

" MS-PCA 1379005

21 HIGHLY CONFIDENTIAL

Darry! Rubin Microsoft Confidential 3/10/97

Use of sophisticated visuals can augment this frameless effect even when certain
control panes need to be revealed. The best example is scroll bars. We can make
these semi-transparent, so that they don’t completely obscure the area they cover.
Floating control panes may also benefit from this treatment. Transparent versus
opaque visualization could be controlled by a pane property.

The frameless presentation is ideally suited for the typical browsing scenario
where all navigation happens either from clicking on content links and/or via
Intellimouse operations. Who needs menus or even scroll bars in this case? It

even makes sense for many “light editing” scenarios like creating and sending
email, where everything can be done by the mouse and context menus.

With well-designed context menus, it should be rare to need menus and toolbars
except for heavy duty editing. The few commands that a user may like to have
handy could easily be put (even by the user) into a single small floating or auto-
hidden toolbar.

I think we should push on the frameless Ul concept very aggressively. It should
ultimately be the default setting for all frames, and/or there shouid be a single Ul
command (context menu item or frame property choice) for putting frames in this
state. Of course, the default frame layout that 2 given user prefers should be taken
from the user profile, so that users who want menus and/or toolbars by default can
have it that way.

Now, it’s clear how to do a frameless UI when the frame is full screen, such as-a
Memphis channel, but what about when the frame isn’t full screen? Some cases
are:

« Mouse pointer rests on the frame edge or moves very near it on the inside of
the frame. The scroll bar appears.

e Mouse pointer crosses the frame edge to the outside and then rests very close
10 it. The auto-hidden pane on that edge rolls out.

e As above, but there are multiple auto-hidden frames on this edge; e.g., menu
and toolbars on the top edge (this case also applies to screen-level hidden
frames).” Possibilities are:

— Unhide them all

— Unhide only one of them (e.g., the “outermost” one, or the most recently
used one). For any other(s), draw thin “flaps” at the window edge that the
user can rest or click on to unhide the chosen pane instead.

— Unhide only one of them as above, but if the mouse doesn’t soon move
into the unhidden pane, sequence through the others until the user moves
the mouse pointer.

To be really useful, auto-hiding needs to be more than a simple binary setting for
each pane that says auto-hide versus not. Some cases are:

" MS-PCA 1379006

27 HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

o When one pane unhides, other related panes should too. For example, menus
and toolbars together; horizontal and vertical scroll bars together; or even the
entire Ul together. A property that lets a pane slave its auto-hide behavior to
another (inchuding bilaterally) would solve this.

e When multiple unrelated panes are hidden along the same border, the order in
which they present themsetves should be controllable. For example, you may
want to impose an explicit unhide order, or specify that uhiding should happen
in a most recently used order. A property that specifies a relative unhide
precedence would solve this.

« Once a pane or set of related panes unhides, it should be possible to make it
stay visible for a specified hysteresis period. For example, once
menus/toolbars are revealed, you're likely to hit them more than once, so it
may be desirable for them to stay visible for some period, regardless of where
the mouse pointer is. They’d disappear automatically if they get no further
interaction after the hysteresis period expires. Each interaction would reset
the hysteresis timer.

+ You may want the unhiding of panes to be triggered on some other event than
that of crossing a2 window or screen edge. For example, perhaps the editing
Ul for an app should unhide when the user clicks in the client area of the pane.
This idea combines well with the hysteresis parameter. The window starts out
frameless for browsing (with auto-hidden scroll bars), but clicking inside the
window unhides the menu/toolbar Ul for editing, and this stuff hangs around
until you’ve stopped editing. A property letting you specify the triggening
event for hide/unhide behavior would solve this. App code needs to be able to
hook into this logic so that it can raise its own hide/unhide events for the shell
to respond to. For example, when a user clicks in a drawing, a toolbar specific
to drawing may unhide.

‘We normally think of auto-hide being meaningful only for docked panes, but
that’s not so. Consider the example I just gave of unbiding a drawing toolbar
when you click in a drawing. It’s justas valid for this to be a floating toolbar as it
is to be a docked one.

The properties described in the preceding list clearly offer a lot of control over
how panes handle auto-hiding, in that you can set up the UI to respond in many
different ways. Idon’t suggest that we expose such low-level properties to users,
however. For the most part uscrs should just deal with auto-hide decisions at a

whole-frame level, where the choices are more along the lines of

e Auto-hide the whole frame Ul versus don’t A

e When unhiding on an edge crossing, unhide the whole UTI versus only along
that edge

e Use “sticky” unhiding (hysteresis) versus unsticky

There’s one other thing you can do with panes that | haven’t covered above: you
can drop then in control panes. For example, if you have a pavigation pane

MS-PCA 1379007
2 HIGHLY CONFIDENTIAL

Darry! Rubin Microsoft Confidential 310/97 -

displaying a search form, you could fill in the form with some settings and then
drop the pane on a toolbar. Pressing the resulting button would reopen the pane
with the settings intact for you to complete that search request. Or, dropping a
navigation pane set up to show a document outline would result in a button that
would open an outline pane on the current document. You could even, say, drop a
menu or toolbar into a toolbar; pressing the button would recall that menu or
toolbar.

A note on direct manipulation: as we enrich the Ul with more kinds of direct
manipulation, discoverability and predictability becomes 2 problem. The user
will wonder, what bappens if 1 drop here? To solve this, I suggest that we
implement balloon tips that will appear when the cursor rests over a drop point for
some period.

5.2 Navigation and Search

In today’s Ul, the shell and apps implement somewhat overlapping navigation
functions, sometimes with conflicting conventions. Each world also has features

that would be useful in the other.

For example, Word97 provides a «“Select Browse Object” control on the scroll bar

which affects the behavior of the paging controls; it lets you choose whether the

/1 scroll buttons will navigate by page, heading, footnote, comment, and so on. This
is much more flexible but also somewhat overlapping with IE’s Prev/Next

buttons.

The shell and apps support two other kinds of navigation: via hierarchy panes as
in Outlook and the Windows explorer, and by clicking on links. Here, again,
support isn’t uniform across our apps or the shell (although it’s been getting
progressively better).

Finally, we have different support for search in different places. The biggest
discrepancy is that our apps focus mostly on search features for searching within
the currently viewed document, where as the shell (browser) focuses entirely on
searching between documents.

The navigation and search features of our apps and the browser need to be
integrated and made more flexible. The new shell frame attacks this problem by
providing a standard set of navigational and search tools that application
components can augment. '

521 Previous/Next, Favorites, and History

The previous/next buttons are enhanced. They support the Word97 notion of
“select browse object.” This could be done via a button the way Word does, or

2 " MS-PCA 1379008
HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

via a drop-down list in which the browse objects are named. Either way, the user
should be able to see the current setting in or below the previous/next buttons.

The shell will come with a set of standard browse object choices, and apps will be
able 1o augment this list via app/frame negotiation. The choices will include

e Word97 browse objects (or a subset, which Word augments). E.g., section,
page, comment. Useful for navigating within a document.

« Chronological history. This is IE4’s previous/next behavior, but with
persistent history, so that you can go.‘back” to stuff visited in prior logon
sessions. The history list records all visits, including web and local and
intranet documents and folders. o

« Topic. For content that contains topic links (see Section 5.5.2), this will
navigate along the topic chain (i.e., documents that are the Top of a topic).

« TFavorites. Navigates along the Favorites list.

« Search list. Navigates along the search hits from the last search (usually still
displayed in the search pane). .

o Navigation list. Navigates along the list of links in the navigation pane.
Examples would include a filing hierarchy, document outline, mail folder,
newsgroup, topic list, search list, or other list of links. The links are traversed
in the order they visually appear in the pane, starting from the currently
highlighted entry. '

As you probably realize, most forms of previous/next navigation can actually be
done by opening an appropriate list in the navigation pane and using the last of
the above previous/next settings. For example, you could navigate by history or
favorites just by opening those lists in a navigation pane and either touching links
directly or setting previous/next to follow the navigation list. The advantage of
using a navigation pane explicitly is that you can use the filter/sort/categorize
options on the navigation view to control the order of previous/next traversal.
Using the built-in favorites and history browse object choices is, of course, much
easier.

One more point on previous/next: the design I’'m proposing puts previous/next
within a document on the same continuum as previous/next between documents.
Partly 1 do this because the operations are fundamentally the same, and partly
because is a web world the question of *“within document” versus “between
documents” is a lot grayer (in a set of related web pages, is a web page a
document or a part of a document?).

Nevertheless, for some of the operations like previous/next page and
previous/next in history, it may make sense to provide dedicated buttons in
addition to the general ones that can browse by any selected list. Because you can
direct manipulate control panes as discussed in Section 5.1.3, you can easily
customize the Ul to put the various navigation buttons where you want them, such

" MS~PCA 1379009
25 LA cé N%E!QOOQ

Darry! Rubin Microsoft Confidential 3/10/97

522

523

as in tool bars, scroll bars, and menus. You can have them show up in more than
one place, too.

Navigation Panes

The use of navigation panes is a significant feature the shell frame provides for
enriching navigation. This is because navigation panes provide an overview of
the navigation context you aré traversing, and because you can control the order
of traversal by applying viewing operations to the pane, like sorting, filtering, and
categorizing (see next section for details).

For example, you could open a navigation view on a newsgroup, categorize on
thread, and traverse by message within thread. You could open Favorites, filter it
on the keyword “news”, and traverse just your favorite news. You could open
History, categorize by site, and traverse by history within selected sites.

Another use of navigation panes is to display the logical topic hierarchy of a
collection of material. The shell can draw such a hierarchy based on topic links if
the material includes them (Section 5.5.2).

With full sorting, filtering, and categorizing available, you can make much more
effective use of big lists like Favorites and History without needing to manage the
physical organization of the lists.

Navigation panes are also important as viewers for search lists. They make it
easy to view a search list, refine it, and visually organize it (filter, categorize...) in
the manner most suited to exploring the search results. Because the navigation
pane stays in view as you explore the hits, you can browse through the hits much

more quickly.

The U for presenting hierarchies in a navigation pane will of course need a full
complement of outlining controls, such as for expanding and collapsing the
hierarchy. Balloon text for the hierarchy items should also be supported (a la
Word’s outline pane in the Online view).

Searching

In our apps and shell today, we make a distinction between searching within a
document and between documents. But it doesn’t need to be this way. 1Us
important to make search more uniform, because as I pointed out above, the web
world blurs the distinction between “within™ and “between’” documents.

“MS-PCA 1379010
26 HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

The hyperactive desk solves this by defining a common search form that
applications can augment via frame negotiation. The key to this is a form field for
controlling the scope of the search, which can be

o Current frame (i.e., document or view) only

e Desktop (desktop contents and currently open frames)
» Local machine

e Intranet

o Internet

The model for searching is basically the web model. That is, searches are done by
going to a search page where you fill out the search critena. But here, we take
advantage of navigation panes to avoid needing to visually leave the context
we're starting the search from.

So, a typical search in a Word document is a frame only search, whereas a typical
IE search is an intemet search. The unified search form makes the full
complement of search options available across the range of scopes (of course
some options could be grayed out depending on the scope selected, or the type of
object currently being viewed).

Note that the ability to do in frame searches applies to all views, including things
like traditional folder views. Anything you can view in a shell frame is content
you can search within. This makes it much easier to navigate within large
collections, like document and mail folders. You no longer have to conduct these
searches visually.

Now, most intraframe searches are simple string matches and for this it would be
pretty heavyweight to open a navigation pane with a big search form. Adding a |
“quick search” item to a menu or toolbar easily solves this. Quick search would
open a small floating navigation pane with a subset of the search form {e.g., just
the match string field, and all other search choices defaulted). So, the quick
search could look basically like Word’s currently find dialog.

Note that this quick search is really pothing more than a normal search with a
canned set of form and pane settings. If we didn’t supply it, the user could as well
do it themselves by opening a search, diddling the form and pane options to create
the quick search pane, and then dropping the pane into a toolbar (sce Section
5.1.3). Indeed, a user can package up any number of canned searches this way for
later use.

Note that today’s notion of File Open goes away and is replaced by the search
mode). File Open—if we even provide a command of that name—becomes just a
subcase of search; it is a search form tailored to finding files, and as such, also
includes links for file navigation.

“THS-PCA 1379011
27 HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidennal 3/10/97

524

Because it is just a search case, the File Open form itself can be linked from the
general search form, hosted on a menu or toolbar, and customized by applications
a5 well as the user. Also keep in mind that the “result” of File Open is just to
produce a list of links that you pick from; for example, list of search hits, or the
contents of a folder you navigated to. There is no notion in the Ul that you are
doing anything except navigating when you finally pick from that list.

Link Following

In a web world, clicking on links to go places is obviously a frequent operation.
It’s therefore something to focus Ul work on. We have a few rough spots today.

First, we don’t treat everything as links that we should. Any kind of reference
should look and act as a link, including section, page, figure and other references.
Word97 has made a start here.

Or consider mail. The names appearing in a mail header should all be links to the
users’ address book entry. The list of attachments should be links. Anywhere
you see a file or a folder reference (whether textual or iconic) it should act as a
link. When I say act as a link, I mean it is visualized as a link and the mouse
cursor responds in the link-like way (hand pointer).

Second, for such an important feature, we don’t offer much richness. We don’t
offer options on how to visualize links, or whether they should do in-frame versus
new-frame navigation. We also don’t do anything to help users know where links
lead to; they have to just try them.

These things are all easy to fix by defining a set of properties that can be set on
links and on frames. They include:

e Link action. Determines the action to take when the link is clicked. One of:
— Do nothing
— . Navigate in frame
— Navigate in new frame
— Editin place (i.c., OLE in place editing in nested frame; only applicable if
link is set for in place visualization)
e Link visualization. Offers several options on how the link should display in
context. One of:
_ Textual link. The property provides the text string and optional display
style (underlined colored text, highlighted text, etc).
— Icon. The property provides the icon ID.
_ Button. The property provides the bution parameters and label.
- Bitmap. The property provides the bitmap.
_ Anchor. When displaying as an anchor, the link provides no display
content of its own, and instead attaches to content in the host document.

//\
28 ~—=<TpcA 1379012
Ms-PCA 1 EATIAL

HIGHLY CcO

Darry! Rubin Microsoft Confidential 3/10/97

525

The anchor property provides the range information for the anchor. The
visualization setting property provides the style for visualizing the anchor
(highlight, enframe, color reverse, €tc.)

— 1n place content. The property provides the cached presentation, object
frame settings, and activation information.

« Balloon tip. Provides optional balloon content to display when the mouse
pointer hovers over the link. The shell can add information to the balloon to
give the user a clue about how costly traversing the link will be (e.g., provide
textual or visual feedback if it's a slow-link case, or a big fetch case).

All these properties can be set on a per link basis (usually by the author).
Properties can also be set at a frame level to provide a default behavior for link
action and visualization. For example, the system default is for in frame
navigation and visualization as blue underlined text; however in a Word frame the
default visualization for comment links may be set to be yellow highlighted text,
and the frame may, be set for new frame navigation.

While the link- and frame-level properties for new frame behavior will usually
result in “the right thing” happening, there are times when the user wants the
other behavior. To let the user know which way a given link will navigate, the
hand cursor will display as just a hand for the in frame case, and as a hand with a
drop shadow for the new frame case (or, as a hand surrounded by a little frame).
A modifier like shift-click will let the user choose the altemnative behavior for the

Jink; thus, shift-click opens a new window if the cursor is a hand, or navigates in
frame if the cursor is a shadowed hand.

Tracking Panes

Tracking panes also help users with navigation, because one thing they can track
is link previews.

A link preview is a lookahead of the information being linked to by a link in the
content pane. For links that have balloon content, this content is displayed in the

tracking pane. For links that don’t, part of the linked content 1s prefetched and
displayed here.

Thus, by tracking link previews, users can get an overview of where the currently
visible links lead.

Link previews are useful for more than just the web-like hypertext case. They’re
also useful for previewing any kind of hierarchy. This falls out of the way that
unified storage treats hierarchy as a case of linking (see Sections 2 and 5.5)-
However. because hierarchies typically have lots of entries, cach of which has
sizeable content, the tracking pane for 2 hierarchy should default to a single-item
preview (see Section 5.1.2).

2 “MS-PCA 1379013
HIGHLY CONFLDE)H'IAL

N

Darryl Rubin Microsoft Confidential 3/10/97

Scenarios involving hierarchies include previewing the children of folders, news,
and discussion groups, as well as address book listings. (Address books can be
implemented as folders of entries in unified storage.)

Finally, note that tracking views can be graphical, not just textual. For example,
the shell or an app could supply a graphical context view that displays a graph of
topic nodes to portray the logical context surrounding the material in the content
pane. The topic nodes could be based on topic links defined in the material (see
Section 5.5.2), or any other internal knowledge of the material’s structure.

5.3 Viewing

On a web-centric desktop, viewing is certainly one of the most important
operations. The viewing features must be exceptionally nch, applicable across
many kinds of information, customizable, and extensible.

The key features are:

« Full Notes-like viewing features in all list-oriented content

- Sorting (multiple levels) :

— Filtering (simple and with boolean operators)

— Categorization (multiple levels) .

- Aggregation (2 categorization where an expression over the category
contents is evaluated and displayed on the category heading)

- Threading (a categorization based on a thread ID property that identifies
the root object of the thread; the root can be any kind of object, not justa
message) .

— Named, user defined views (combinations of above options with settings)

- Named, pomainer-deﬁned views (backed by arbitrary app code)

e Viewing features are applicable to any pane

~ Any list-like information in a view can be sorted, filtered, etc.

— * However tracking panes are mainly filter- and thread-view only because
the list order is driven by the pane they slave from

o A standard set of generally useful views; for example:

—~ Normal

— Page Layout (how view will print)

— OQutline (content pane categorized on level property)

~ Thread (content pane categorized on thread ID property)

_ Online (navigation pane with outline for navigation)

_ Comments (an outline pane and 2 comments pane; see Section 3)

o All views are searchable (see Section 5.2.3)
« Al views are editable (subject to conlent-speciﬁc'restn'ctions). This will be
explained in the next section.

" MS-PCA 1379014

30 HIGHLY CONFIDENTIAL

Darry! Rubin Microsoft Confidential 3/10/97

Except for external comments and links, I don’t think any of the above features
are particularly new. Notes, obviously, has had most of them for a long time;
Exchange, Outlook, and Office have some of them too.

What’s new here is that I'm saying we collect a rich set of viewing features we’ve
‘ implemented in a scattershot way across a number of products, rationalize them,
and host them as basic features of the shell. Individual apps can then augment
them as necessary, for example, by adding to the list of named views under the
View menu, and by adding options to the view settings form and viewing toolbar.

Having a full complement of viewing features makes other features of the shell
much more useful. For example, you can now filter, sort, and categorize things
Jike the history and favorites lists. If these lists get big you no longer need to
worry about organizing them into a hierarchy to make them manageable; with
viewing, you can impose any dynamic organization you want to help you focus on
what you need.

The ability to apply viewing options to any pane raises the complication that
viewing controls like the view menu need a way to know which pane to operate
on. The most obvious way to handle this is operate on the pane that has the focus.
Alternatively, the view settings forms could have radio buttons indicating which
panes to apply the settings to. It might also be handy to put an optional viewing
™ widget on the pane frame that the user can touch to open the view setting controls.
View settings could also be access from the pane’s context menu.

One point worth hi ghlighting is that with these viewing features, the shell is now
providing a set of views that used to be the specific domain of the apps; for
example the online and comments views. This is because the ability to navigate
by a content outline and to see the comments on a piece of matenial are
fundamental and applicable to ali kinds of material; these shouldn’t be app-
specific features.

Also note that unified storage makes building some of this support fairly
straightforward. For example, unified storage provides a standardized api for the
shell to enumerate both the children of any container, which also include its
internal comments and links, as well as comments and links that have been
associated with it externally. Thus, the same hierarchy and table viewers that the
shell uses for folders will work for the other kinds of content you want to put in
navigation and tracking panes. Any content that can’t be handled in this standard

way can, of course, be supported by app-supplied code for that kind of content.

What set of standard views to define is an important question. In the bullets
above I’ve suggested a few views based on those in Office, but that’s just a
starting point. I think we’ll want to think through some additional views based on
collaboration scenarios.

3 MS-PCA 1379015

HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

5.4 Editing

Our current Ul practice is to create a rather large distinction between views that
can be edited and those that cannot. This comes from the very different mindset
between “shell” and “app”. Traditionally we think of the shell as a viewer only,
with all manipulations done via commands and dialogs. Win95 has made a tiny
step away from this with directly editable file names.

Applications on the other hand have lived at the opposite extreme, where the
assumption is that most views are all about editing. This is fine, except it throws
a lot of Ul in the face of people who only want to browse. I've already explained
how we can use a “frameless” Ul to solve this problem.

It’s worth noting that even apps aren’t totally consistent about editability. They
have many accessory views that are mostly about showing and not editing.

A goal of the hyperactive desktop is to eliminate the distinction between things
that can be edited and those that cannot (while keeping the world uncluttered for
the people who are mainly viewing oriented.) In principle, anything you can look
at is something you may at least want to be able to annotate and possibly excerpt
and send to someone. You may well want to make other changes into the material
itself, if you wish to use it in something else you’re putting together (and
assuming the material isn’t copyrighted). There are many cases where this 1sn’t
possible today, or at least not easy.

The view editing features the new shell frame supports are:

e Inlist-like views, modifiable properties can be edited in place

e Columns can be rearranged and resized by direct manipulation

« New columns can be dropped on a view from a column well

o Dragging rows between categories in a categorized list will implicitly change
the value of the property the view is categorized on

« A user can add comments and links to any material—even if the content is
read only—without modifying the viewed document (external comments and
links—see Section 5.5.4) B

o Ifauser tries to edit the content of material that he has no permission to write,
then depending on the situation, either a wamning explains that saving will
only be possible to a new location, or else the editing is denied (see below).

« A change in the frame visuals indicates when the contents of a frame has been
edited by the user (the user will also know this when they try to close the
frame or navigale away from its contents; see below).

The generalized editability of views has a number of implications. First, it says
that we will be putting forth a standardized set of table editing conventions and

“"MS-PCA 1379016
32 HIGHLY CONFIDENTIAL

Darry! Rubin Microsoft Confidential 3/10/97

offering a standard table viewer. The table viewer would talk to the underlying
data via a standardized interface like OLE/DB.

I suggest that we factor the table viewer into two levels of functionality, one that
ships with the shell, and another that ships with Office. The basic table viewer
would have all the key Notes viewing features, direct manipulation of columns,
basic outlining/hierarchy features, and editing of field contents at a Wordpad
level. Advanced table viewing, editing, outlining, and formatting would be
supplied by Office and by other ISV application components.

For editing in table views 10 be meaningful, the undertying data source must
cooperate, for example, by providing realtime field validation. While this isn’t
strictly required—the data source can always refuse the edit at field update time—
I nevertheless expect that most sources will want to supply custom validaters.
Fields in a table should be implemented as controls to make this possible (with the
shell supplying a default control for this purpose). Thus, 1SV’s can override the
standard implementation at both a field level, or at the whole table (view) level.

A second implication of view editability is that we need to come up with a save
model with works in a world where navigating among documents happens in a
single frame. Today we have at least two save models. In the shell we allow in
place editing of file names, and for this we implement a persistent, no
confirmation model. That means that all edits are implicitly committed as they
occur, and without the user confirming. Office, by contrast, implements a
nonpersistent, positive confirmation model, meaning edits are not persistent and
must be confirmed to be saved. The question is, in a world where folders and
documents are treated the same, what’s the right save model?

There are several possibilities, but I suggest we consider 2 persistent, positive
confirm model. Here is what this means. You're viewing content—it doesn’t
matter what kind—and you rmake some changes. These changes are persisted into
your cache as you make them, either instantly or using an appropriate auto-save
interval; but they aren’t committed to the underlying data source until you
expligitly save. You can do this yourself, or else the system will ask you at an

appropriate time by bringing up a save dialog.

When should the system do this? It depends on what you were editing. The
decision will be up to the data source via the frame negotiation protocol, and
possibly under the influence of preference settings. Here are the likely defaults:

e For certain tabular content, such as a folder properties display, as soon as you
complete editing on a field or row.

e For documents structured as a single container, as SOORn as you navigate away
from the document.

e For documents structured as a set of linked containers (e.g., set of linked web
pages), as soon as you navigate outside of the logical set.

" MS-PCA 1379017

33 HIGHLY CONFIDENTIAL

e '”\‘7

Darry! Rubin Microsoft Confidential 3/10/97

« On any of several triggering events:

— Immediately upon revisiting something you’ve made uncommitted
changes to

_ When the uncommitted changes have been in the cache more than some
time

— When the cache needs room and wants to flush the changed content

— You close the frame you were editing in

— You logoff

Automatically popping a save form up can be rather annoying, especially if it’s
done at the wrong time, like too early. “Too early” is when you were navigating
away from the changed document to consilt something else, and you knew you’d
be going back to continue editing.

A way to solve annoying save popups is to let the system agent handle the job. 1
say this because the agent is modeless; it can offer discreet suggestions without
disturbing the user’s flow, and get out of the way if it’s clear the user has no
interest.

So, say you navigate out of a document you just changed. The agent appears to
the side of the frame and asks *“Save the changes you made to Foo document?”
Here, the name Foo is a link to the uncommitted document and the choices are

Save, Save As, Discard Changes, Decide Later.

If you choose not to respond to the agent right now, fine, it will disappear after a

-few seconds, or as soon as it notices you doing much input (presumably in this

case you know exactly where you want to focus right now). Picking Decide Later
is the explicit way to make the agent go away.

Now, let’s assume you’ve let a bunch of uncommitted images accumulate because
you ignore the agent a lot. All’s not lost, because uncommitted images are still in
your cache, and you’ll get more reminders at the other times mentioned under
“Triggering events” in the list above. Another, subtler reminder is that the
frame’s border visuals will have 2 distinct emphasis any time you’re in 2 frame
with uncommitted changes.

Now for a question: Where do you end up when you navigate back into something
that has uncommitted changes in the cache? For example, you’ve edited but not
saved Foo and some time later follow a link to Foo. Do you see the original Foo
or your edited one? This is a hard question and you can easily argue it either way.
One thing is clear, though: if you imagine some program running that asks for
Foo, it should get the original image, not the changed one, because the changes
haven’t been committed yet.

This suggests that a similar behavior is appropriate at the Ul level, at Jeast in some
cases. But not in all cases: think of linking out of your changed document and

MS-PCA 1379018
HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

then Back’ing to it. One step away and back. You expect to see the changed
image, not the original.

I think the answer 1s that we should do one thing or the other based on heuristic
knowledge of what the user is up to. For example, are the changes super recent, is
the user retracing a short pavigation path, 1s this happening in the frame where the
edits occurred? If yes on most or all counts, it’s good bet you want to see the
changed image. 1fno, probably better to show the original. But in the latter case,
what if you really did want the changed version?] suggest that whenever the
system presents an original document where an uncommitted version exists in the
cache, the system agent can pop up and say so, offering to replace the view with
the other image.

As you can see, the save model question is fairly complex and will require some
further thought and experimentation.

A third implication of view editatibility concerns what it means to save n
multipane views. The problem is that some multipane views involve content that
isn’t part of a single document, such as when you have a list of search hits ina
navigation pane and a jocument in the content pane, and maybe even some link
lookaheads in a tracking pane. You may well want to edit and save the search
hits, or perhaps make edits in the tracking view, but now it’s rather confusing
about just what the current “document” is, and therefore, what File Save is going

to save.

One possibility is to use the same approach as is used for viewing options on
panes. That is, make save operations apply to the pane that has the focus. Let me
make clear what this doesn t say. If you have, for example, panes showing a
document’s contents, its outline, and its footnotes, then saving when the outline
pane has the focus doesn’t do some weird thing of saving just the outline
someplace; the document is saved because that is what the outline pane is a view
on. On the other hand, if you are saving when a search pane has the focus, then it
is the underlying search folder that is saved.

To make this approach at all workable, the save form would need to make it very
clear exactly what you are saving.

An alternative way to deal with this problem is to restrict what panes can be
edited, so that a navigation or tracking pane can only be edited if it is providing a
view on the same container as the content pane. If it is showing something else,
then the pane cannot be edited, and so the saving issues don’t arise.

5.5 Linking

If the hyperactive desktop has a fundamental operation, it is linking.

35 " MS-PCA 1379019

HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

-

As I’ve already discussed, linking is the way that essentially all navigation
happens, whether touching an icon, browsing a web of hyperlinks, or navigating a
hierarchy. Anywhere that a container reference occurs in the UL, in any kind of
view, it should render and behave as a link. And 1 use the term container in its
broadest sense, meaning any folder, document, message, REwsgroup, address
book, and so on.

Even any appearance of a user reference in the UI should be treated as a link to
the user info relevant in that context (i.e., it should be a link to the user address
book entry or a specific part of it, like the email address).

Links are also the way that most or all U is invoked, especially if we follow
through on the web Ul model being proposed by Eric Michelman.

Indeed, the Ul controls in menus and toolbars are Jinks. Menus and toolbars are
nothing more than containers that render their contained links in a particular way
and provide menu-like and toolbar-like interaction behavior. You could as well
drag one of these elements to the desktop (or into any folder), in which case it
becomes a regular looking Jink that happens to invoke a Ul command.

T’ve already said qui{c a bit about navigating using links, so in this section what
I'11 focus on is the process of creating links and what features are available for
that.

Note that everything I say about links applies to annotations as well. Annotations,
such as Word comments and footnotes, are just a macro operation for creating 2
new object and then linking it to another.

The basic features of links are that

« They can be created by direct manipulation as well as by menu operations

o They have properties, including a type, source/dest anchors, and others

e They are stored as full-fledged objects in the storage system, meaning they
cart be
— Queried, filtered, sorted, categorized, and aggregated on their properties
_ Read/unread tracked (meamng link followed or not)
_ Protected via access permissions

o They can be stored external to the objects they link

e They can link anything to anything (i.e., anything for which you can make a

« They can visualize in a number of ways, including as various forms of
hypertext object and as in place frames (see Section 5.2.4).

e Theycan update and/or cache themselves along a spectrum of hot to cold, as
determined by their update properties

“"MS-PCA 1379020
36 HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

551

Creating Links

Links can be created in the ways you’d expect: via direct manipulation and
context menu actions, as well as via drop-down menu and toolbar commands.
(Remember, any command can be put in any or all of these places.)

Because links can now have properties and source/destination anchor ranges,
some refinement of current Ul is needed. For example, you need to be able to
highlight both the source and destination targets when establishing a link. The
source end is easy: if the user initiates a drag operation from inside a highlighted
selection, use that as the link anchor. If the drag is not inside a selection, establish

an insert point at the drag origin and make that the anchor.

A similar approach can be used for the destination anchor. 1f the drop point is
inside an active selection, make that the anchor. Otherwise establish an insert
point at the drop coordinates and make that the anchor.

Menu and toolbar actions to make links would work in a two-part way. The user
would establish a selection or insert point and call up a Link or Insert Link verb.
The cursor would change to graphic indicating that a link is in progress. The user
would navigate to the target selection or insert point and use a menu or toolbar
itern Complete Link to finish the job. (1 prefer this to saying that click imaplicitly
completes the link, since the user may need to navigate to get to the target, and
that means some clicking.) ‘

It may be desirable to let the user fill in link properties as part of the link creation
operation, versus first creating a link and then manually opening the properties
page. This could be done by automatically calling up the properties page as a
floating pane when the source anchor is established. The link properties page
would stay in view throughout the link creation process, so that the user can
review and set the properties at any time. There are two good reasons for doing it
this way:

1. Taqlet the user manually fill in the destination anchor if, for example, the
destination is something they can’t directly navigate to.

2. To let the user specify whether the link should be stored with the source or
destination container, of extemnal to either (see Section 5.5.4).

Once a link has been created, its properties can be called up and changed at any
time by right clicking on either end of the link.

“MS-PCA 1379021
37 HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

5572 Link Types

Link type information includes two orthogonal kinds of type information:

« Containment type. Conveys physical hierarchy or logical hierarchy with
deep copy semantics.
— Parent
- Chid
— Hyperlink (AKA shortcut)
o Topic type. Conveys Jogical (topic organization) hierarchy.
— Genernic
~ Next (in topic)
— Previous (in topic)
— Next Topic
— Previous Topic
— Topic top (head of 2 topic)
— Footnote
— Cross reference
(Document, section, page, paragraph, line, table, figure, chart)
— Comment

The containment and topic type of a link are usually set by the shell or the active
app based on the Ul operation that was invoked. For example, Insert File creates
a child link with a generic topic type, whereas Insert Footnote creates a child with
a footnote topic type. Footnotes, Cross references, comments, and other items
would have choices on the Insert menu to make creating those kinds of objects
easy.

The containment type of a link is used by the shell mainly in synthesizing
hierarchy views. For example, a node that has child links can be expanded to
show the children, whereas a node which is a cross link would act as a leafina
hierarchy view. And, when displaying a container in the content pane, a link to its
parent will be included and rendered as a parent link.

The topic type of a link is used by the shell mainly for navigation and viewing
operations. For example, by filtering tracking view on the topic type, you can
choose to see only comments or only footnotes, of poth. Or, when viewing a
container full of links, you can filter so that only the top (head) of each topic in
the collection is shown. :

As for navigation, by setting the previous/next buttons to navigate by topic
(next/previous topic links), you can move between the root pages of a set of
topics, skipping the detailed pages about each topic. Conversely, selecting to
navigate by previous/next in-topic links will move you sequentially through the
material in each topic.

/
uS-PCA 1379022

38 JIGHLY COMFID!

Darryl Rubin Microsoft Confidential 3/10/97

The inclusion of things like explicit previous/next topic and in-topic links is up to
the content author. When not present, the shell uses a default ordering where
possible (or else disables that navigation option). For example, in absence of
explicit in-topic links, the shell will navigate between peer items in the same
container. In absence of topic links, it will navigate through history along
document/web page boundaries.

553 Link Properties

Links have other properties besides type. The other standard link properties
include:

« Basic file system properties (timestamps, permissions, GUID, etc.)
o Source and destination anchors '
— Identity of object anchored to (e.g., pathname or GUID)
— Range in object of the anchor ’
e Link action, visualization, and balloon tip (see Section 5.2.4)
o Link update behavior
_ Prefetch/caching settings
_ Hot/warm/cold update settings

The combination of these properties allows for a very rich set of linking scenarios,
including the full gamut of traditional hypertext linking, in place editing, and hot
linking scenarios. All these cases can be turned into any of the others just by
adjusting the link properties.

Moreover, linking can be as fine grained as desired, because the separate source
and destination anchor properties allow for differentiating what specific part of
the source is linked to what part of the destination. This lets the shell visualize the
source and destination sides of 2 link appropriately, as well as navigate to the
right destination spot when a link is followed.

~

5.5.4 Extemal Links

The hyperactive desktop supports the notion of external links. What makes this
possible is that links are represented as file system objects and contain separate
source and destination anchor specifications. Together, these things mean that
links have a representation that is independent of the items they Tink.

There are actually three places where a link can be stored relative to the items that
it links:

R TIID
MS-
39 HIGHLY CONFIDENTIAL

-~ Darryl Rubin Microsoft Confidential 3/10/97

« As a child of the source object. This is the traditional web link case.

« As a child of the destination object. A good example 1s responses in
discussion folders (newsgroups), where a given response links back to the
thing it responds to.

« As a child of some other container. This is the case of a true external link,
such as a link made between documents on a CDROM. The link itself is
stored in a folder stored someplace on a hard disk separate from the CDROM.

Remember that when I say “link”, T also include all forms of annotation. Thus,
annotations can be external as well.

The shell and apps determine where to store a link based mainly on what
operation the user is performing. For example, when responding to messages or
other documents in a folder, the default is to add the response as another
document in the same folder, with the new document containing the hink to the
item it’s responding to. When adding comments inside a document, the default is
to add the new comments as children of the document if the user has write access.
When making links between things the user has no write access to, the defauit is
to store an external link in a default per-user folder allocated for this purpose.
The user can change or override these decisions via a link’s properties page
(Section 5.5.1) and via global preference settings in the shell.

The question of where to store external links bears more discussion. While in
principle they can be stored anywhere in the storage hierarchy, I think that for
starters we should adopt a simple convention: If a link cannot be stored in the
source or target document, then an external link is created and stored ina
particular folder: a per-user, “private web” folder.

What this folder represents is all the user’s personal links—links created as part of
the user’s own view of the world, and not seen or shared by other people.

By default, the web will render in all views the user’s private web links as well as
the links that are contained in the material in question; but the user should have
the option of turning the private web on view and off. This could be one of the
view settings, along with those that control the other viewing options I've already
discussed.

The enabled/disabled setting of the user’s privaie web could also guide the shell
in deciding whether to store newly created links as private or public in cases
where that’s ambiguous (such as when the user does have write access to the

document).

Note that because a private web is just a folder, users can if they wish open the
web folder itself to view and manage it. For example, they could categorize on
document name to find all links associated with a given document and then delete

“MS-PCA 1379024

40
HIGHLY CO

Darryl Rubin Microsoft Confidential 3/10/97

5.6

those or else click on them (or open 2 tracking preview pane) to inspect what they
link.

Other Functions and Frame Seamlessness

From what I've presented so far I hope you’ve gotten the sense that the standard
shell frame presents a structure that can support rich variety of navigation,
viewing, editing, and linking functions. By modeling the UI organization for all
this stuff after an evolution of Office, we can make it very natural for Office to
slot in and augment the basic shell features.

Please keep in mind that what the shell supplies as standard features may only be
a subset of what I’ve talked about so far, the rest being left for Office and other
apps to slot in.

I’d like to talk about a few more categories of function where the sheil can
provide richer functionality than today while also offering a better framework for
seamlessly hosting app (especially Office) extensions.

First, the shell should have an Insert menu, providing a standard way for inserting
objects into any context. Apps would extend this menu to include their specific

types.

So, to create something new, you would use cither a template (perhaps sitting on
the desktop) or File New to create a blank document or folder, and then use Insert
to insert specific kinds of objects.

Unlike today’s world where you need to choose the kind of container you're
creating at File New time, we could possibly simplify the list to a few generic
types; for example, document, folder, link. This is possible in a timeframe when
all our documents are HTML native, meaning they share a common
representation. So, you just create a document and start typing.

If there still need to be major file structure differences required by different apps
at the outermost level of the document file, then the app itself could reformat the
document the first time an Insert of that app’s type is done. That is, the first Insert
would dynamically establish the document’s outermost format. Any future inserts
would result in embedded objects in the OLE sense—the outer document would
not reformat.

Undo at app and shell levels should also be integrated and be made persistent.
For example, suppose I make some changes to a document, then link to another
document and make changes there. 1should be able to not only undo the changes
{0 the latter document, but also navigate back to the first document (€.g.,
Previous) and undo the changes made there. Since folders are treated like

“MS-PCA 1379025
! HGHLY ConFIAL

Darryl Rubin Microsoft Confidential 3/10/97

documents, the same undo model would apply to folder manipulations. I'm
assuming a multiple-level undo model such as Word has implemented.

Printing is another area where we can provide a ncher framework in the shell.
The shell’s print dialog should be a subset of the one in Office. The basic
principle is that all views should be printable, with fairly reasonable print
formatting and a decent set of print options. Specific apps can augment this
feature set as desired via frame negotiation.

People in Office have proposed one idea that fits well with the idea of generic
New and Print capabilities, as well as generic viewing: they want to make the
app/frame hosting protocol be based on exchanging HTML between the app
component and the frame. This would make the frame entirely responsible for
display rendering and (by logical implication) printing. I think this idea has a lot
of potential because it really pushes on the idea of making documents completely
HTML-based, plus it makes sure the shell has all the code needed to view any
HTLM document.

Another function ripe for shell/app integration is the Office assistant. This should
become the Windows assistant. We'd define the conventions and protocols that Jet
apps extend the assistant’s knowledge base and behaviors.

To sum up, I’m suggesting here that we take advantage of the great work Office
has done in providing a consistent UI across the component apps. What we can
do now is use that (or an evolution of it) to provide the guiding framework for the
shell frame UL. We put enough features into the shell frame to make the shell the
best hypertext viewer on the planet, and let Office and other apps slot in the rest
of the features. Of course, because the shell frame design is guided by Office,
Office will slot in the best.

Finally, rationalizing the Ul this way helps with the frameless Ul concept
discussed earlier. To make navigating in a single frame among different kinds of
information as seamless as possible, the in-place Ul must be relatively
homogeneous across information types. Using a superset like Office as the
starting point for the shell frame will help us achieve that.

6 The Personal Newsletter

I return now to the idea that headed up the user scenario in Section 3: the personal
newsletter.

All the ideas I’ ve discussed up to now have been about providing a set of Ul tools
that the shell and apps can take advantage of to provide a seamless way for users
to navigate among all their information, and to view and navigate it using a small
number of views that are applicable across all that information.

“HS-PCA 1379026
42 HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

This is all great but it’s just tools. What’s possibly most important about the
hyperactive desktop is the way it exploits push model to go beyond giving the
user tools: 1ts mission is to give the user information, too—the information the
user most needs to do their work for the day. The personal newsletter is how this
mission is served. :

Think of the newsletter as the user’s primary launch point. The launch not for
apps, but for information and for tasks involving that information. It is the most
concrete manifestation of LAYF.

The newsletter is a dynamic document synthesized by a newsletter agent on the
user’s desktop, based on an authorable template. It creates each periodic
“edition” of the newsletter by scanning information sources and alerts based on
user profile information, including explicit user subscriptions and implicit
subscriptions gleaned from enterprise model information about that user, their
position, and their projects. '

Section 3 gave a pretty good overview of what’s in the newsletter, and for even
greater detail and lots of discussion on Ul and infrastructure, you can read the
“Beyond Browsing” memo.

What I'd like to do here is discuss a few of the more pragmatic options for
implementing the newsletter.

The key to the newsletter’s usefulness is its ability to present information the user
really needs to see, and in an attractive, easy to skim and drill-down form.

For some of the information it covers, this is fairly easy. For example, Hot Mail
can show any urgent items first. Your Schedule can just show the next two or
three upcoming meetings and reminders. Project Changes can show the two or
three most recently changed project documents, and any documents authored by
this user that has received new comments.

All these lists of course can be scrolled or linked-to to show more items.

For other kinds of things like company and industry news stories it’s a little
harder to know what’s relevant to this user. In “Beyond Browsing” 1 discussed a
data mining model for how this could be done (and how that would also serve all
the other cases I just went through). But let’s assume it’ll take us a couple
releases to get there. What other approaches are there in the meantime?

The obvious one is an explicit subscription model. For each column in the
newsletter, the user can fill out a subscription form giving the match and raking
criteria that should be used to fill it. While things like mail and schedule can
probably be defaulted well enough, cenain other categories like news and special

“HSPCR 1373077
43 HIGHLY CON}TI?)ZE?‘]QHA:ZZL

Darry! Rubin Microsoft Confidential 3/10/97

interest will need explicit user subscriptions. (In the case of customizing mail and
schedule via rules, you the rules amount to the subscription).

A problem with a subscription model is that users have to decide to perform a
subscription action. A way to make this easier, so that it can happen in the
context of a user geiting information, is to introduce a control in the Ul by which
users can express their level of interest in a piece of material they’re looking at.
The Beyond Browsing memo di scussed how this would be used in a data mining
context. But it can also work for simplifying an explicit subscription process.

For example, suppose each content frame has a small control on the frame border
that acts as a linear “interest” scale. You can click anywhere along the scale to
indicate your level of interest in what’s currently being viewed. The software
could then get some attributes about the thing under view—who wrote it, what
project is it part of, what kind of document is it (marketing plan, etc.), what are
the keywords and other attributes associated with the document. This information
could next be checked against your subscription list to see if a new subscription
may be needed. If so, the user could be presented with a dialog to add what’s
needed. This “Add New Subscription” dialog may entail a set of choices so the
user can indicate what characteristics their interest was based on.

Project-related information exists in a middle ground where there may be some
need for user-supplied customization on what stuff to care about, but where the
system can also have a Jot of built-in knowledge on how to figure this out. The
key to the latter is having an explicit representation for what 1 call the enterprise
model.

The enterprise model is a collection of databases, most of which already exist
online at most companies, like the employee database, org chart, and project
databases. If this set of information exists in a format that shell and app
components have access 100, you can see how software could be given a lot of
intelligence about what matters to a user.

For example, when a document is changed, attributes of the document could
indicate what type of document it is (say, marketing plan versus test plan) and
what project it’s a part of. Org chart and project databases would then indicate
what people care about reviewing this document (based on the project name,
document type, and author); and a link to this document could be inserted into
their newsletter.

Basically, the enterprise model gives the shell and apps a model for how to

~ connect documents, people, and projects, S0 that changes in one of these can

inform the others. Also, because subscriptions can be associated with any of
these objects via the model, it’s possible for a person to “inherit” interest in
certain news categories, for example, just by being assigned to a project or by

“ MS-PCA 1379078
“ A HIGHLY con%m

Darryl Rubin Microsoft Confidential 3/10/97

telling the system that you share another person’s interests in some category (e.g.,
news).

The “Beyond Browsing” memo has fots of information about the enterprise
model. In summary, it includes:

« Employee database. Provides user name and attribute information.

e Orgchart. Relates people to each other and to projects.

« Position database. Provides the name and attributes for each position and job
function in the company. ,

« Project database. Provides the name and attributes for each project in the
company, and links to the where project databases and documents are stored.
May also express project relationships, like dependencies and contingencies.

e Process database: Same as the project database, but about corporate processes.:
(Like a project, a process is something a specific set of people are involved in,
and which as associated documentation and terms of relevance).

« Email groups database. Provides the name and attributes for each email
group, and a group profile derived from the individual member profiles. (The
group profile expresses things that are of common interest to group members,
useful for directing information to group members.)

e Document templates. Provides standardized templates and meta-templates for
various documents like project proposals, product specs, marketing plans,
budgeting worksheets, and $o on.

o Enterprise dictionary. Provides keyword and concept terms and property
names of significance to the enterprise. This dictionary is an accessory to the
content dictionary used 1o do feature extraction of objects.

e Profile database. The set of user profiles, as well as model (synthetic) profiles
for various company positions and projects. Model profiles are optional, but
highly useful, because they encode knowledge about what kinds of
information and types of documents each position and the members of each
project are likely to be interested in.

Given this information, the system can now get answers to many questions
concéming what a user will be interested, covering such topics as:

e Email: most interested in mail from boss, direct reports, managers up the
chain.

« Projects: most interested in projects assigned to, and contingent and
dependent projects.

e Documents: most interested in documents for projects of interest, especially
document types pertinent to position (e.g., product specs for a development
manager), and policy and procedure documents pertinent to position.

e News, articles, and reports: most interested in items matching project terms,
and terms related to position.

MS-PCA 1379029
45 HIGHLY CONFIDENTIAL

R

Darryl Rubin Microsoft Confidential 3/10/97

Beyond providing the “right” information, the newsletter also needs to present the
information in a nice way. Partly that says it really should look like a newsletter:
a thing with narrow columns, with good use of typography and illustrative
graphics and other eye candy to make it nice looking. To make it easy to digest,
the “front page” should have digests of the key information being linked to, and
not just be a pile of links.

Its format should also be customizable, at two levels: at an authoring level, it
should be possible to control the layout and presentation features of the newsletter
in detail, and to specify the inclusion of content, content categories, and
subscriptions. At auser level, it should be possible to rearrange the visual
ordering of the matenial (the “columns”), to increase or decrease each column’s
depth of coverage, and to tailor the subscriptions.

Note that the subscription model for the newsletter differs from the traditional
one, in that the newsletter acts as single focus for pulling all subscribed
information together into a cohesive presentation. Having multiple subscriptions
doesn’t imply having multiple disparate places to look oralert streams to monitor.

The newsletter can be more than just an information feed. Because it provides 2
view on project documents that have changed, it can also be a focal point for
collaboration.

y; One scenario: My newsletter informs me of a change to a project document of
interest. 1 click the provided link to open it and add a few review comments.
Whoever wrote this document will get a notice in their newsletter that one of their
documents got comments back. They’ll click on the supplied link and, based on
link settings in the newsletter, the document will automatically open in the
Comments view, making it easy for them to review the comments. They can then
comment on my comments if they desire (remember, you can add links, and this
includes annotations, to anything).

Now, because the comments] created now have comments, my newsletter will
inform me that I have comments back, and a link will take me to the document,
again open in Comments view, and with the comments pane categorized on thread
ID (thread view) and filtered for read/unread. This makes it easy for me to focus

on only the appropriate comment threads.

MS-PCA 1379030

26 HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

7 Applications

The hyperactive desktop changes what it means to be an application. This change
is very much in the direction we’ve been trying to head for several years: that of a
document-centric world where apps are components. What the hyperactive
desktop does (or at least tries to achieve) is to componentize the Ul in a way that
makes componentization of apps more possible.

These components are the various elements of the shell frame I've discussed: the
various kinds of control and client panes and the features associated with them,
and the set of standard, negotiable/extensible Ul primitives: open, view, edit,
undo, insert, search, next/previous, print, help (user agent), and so on.

Up to now, when we’ve thought of ““document centric” we’ve thought SDI. But
the hyperactive desktop takes this one step further. Not only is the model “single
document”, it is also “single frame™” single frame in the seénse that when you
navigate via links, the default action is to follow the link within the current frame,
rather than create a new frame. This is nothing more than the internet browser
model.

In this single-frame world, applications become controls that are hosted inside of
HTML documents. You don’t run apps, you navigate to documents. The -
components in view in the document negotiate with the shell frame to add their
unique menus, toolbars, and Ul forms, and to embellish existing ones. Visually,
these changes are usually minor, since the default is for most control panes to be
auto-hidden, and for most embellishments to be straightforward additions to the
existing structure. For example, adding object types to the Insert menu, browse
types to the next/previous type list, and view names to the View menu.

Another attribute of the single-frame model is that there is no longer a difference
between an app object being full frame versus an embedded frame (in place OLE
object). In either case, what you have is an app object embedded inside the shell
frame. The only difference is whether the display region of the app object isa
subset of the containing pane versus the entire surface of the pane. The same
app/shell frame negotiation occurs in either case.

On the hyperactive desktop, a folder is an app object like any other. Soas I've
already discussed, you can author them, embed open frames in them, and embed

them in other kinds of objects. This uniform treatment of folders, coupled with
the rich linking model, is what makes it possible for the shell’s folder code to act
as a universal client for a wide variety of information types, including documents,
mail, newsgroups, appointments, and web pages. Structuring the folder viewer as
an app like any other is quite important. Think of it as a prototype that other apps
will use as a model for how to integrate into the shell frame.

" MS-PCA 1373031

47 HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

The final point | want to touch on has to do with the relationship of apps to
content. In a document-centric, hypertextual world, there really is no dividing
line between app function (Ul) and content. Expressing an app’s help system as a
set of web pages is one obvious example. Put dynamic content on those pages
and you are now expressing the Office agent the same way. Indeed, as Eric
Michelman proposes, and entire app’s functionality can be expressed as a set of
navigable web pages. As in: the help and agent pages for an app contain buttons
for invoking the operation being explained.

1 agree that this is the right direction to go. A web Ul has some big advantages.
It means that:

e The user can use the famihar navigation, viewing, and searching tools to get at
app Ul functionality. These tools work for remote as well as local
information, so parts of an app’s Ul or its add-ins can be internet-based.

» Anapp’s Ul would be authorable using the same tools and techniques that you
use to author any kind of content. The Ul could be made just as attractive as
any set of web pages.

» The app’s Ul could be customized by IT people or even end users to any
degree the app writer wants to permit, using normal editing tools.

« Apps could be upgraded incrementally and transparently, just by modifying a
subset of their pages.

o Ul clutter can be further reduced. Standard menus and toolbars need only
carry the most essential features. Users can find others app functions by
navigation, search, and agent suggestion, and they can then drop any they use
a lot on control panes of their choosing.

A key to making the web Ul work is for the app author to organize the Ul pages
the right way (much as the author of any long document has to organize its topics
correctly). The author also needs to make sure the pages carry the right kinds of
links and search keywords to facilitate discovery.

For example, the app author should make use of some of the organizational kinds
of links I discussed in Section 5.5.2, like Topic links. We should add to this list
of types as necessary so that we have a standard set of link types that are useful
for conveying the semantic organization of a complex body of material. This set
of types then lets us embody a common set of views and previous/next behavior
that other apps writers as well as general content authors can use.

What I'm saying here is that today’s web linking model is insufficient. It lets you
Jink things together, but with no description about how the material being linked
is related. To enable intelligent navigation and viewing features, we need to
encode more semantic information into the links, and apps (for one) should take
advantage of this in organizing their Ul pages.

48 "~ MS-PCA 1379032

HIGHLY CONFIDENTIAL

Darryl Rubin Microsoft Confidential 3/10/97

Content can also contain meta-information that implicitly relates it to one or more
classification hierarchies; this makes it possible to perform intelligent search,
navigation, and viewing of information in the absence of explicit links. This is
important because new information can be introduced into the world more easily
if its relationship to other matenal is implicit in its meta-information—versus
needing all such relationships to be explicitly coded as links. (The latter is more
than just labor intensive; it presents 2 combinatorial problem and implies
maintenance effort when information changes.)

Another thing meta-information can do s provide overview information about the
information being described. Newsletter agents would use this 10 create the
“headline” and “1ead text” for personal newsletter entries, thus making it possible
for the author rather than a robot to generate the lead material. The shell viewer
would also use the overview information when displaying link lookaheads. Note
that this information can be graphical as well as textual—it is HTML.

As a simple example of meta-info in the app domain, apps should imbue their
content pages with search keywords and properties designed to assist users in
discovering app features. Thus, all print-related functions would have a “print”
keyword, and all features of an app thal are considered to be “advanced” features
would have an “advanced” keyword. To discover all advanced printing features
you could search on the AND of those keywords, or you could navigate to a built-
in printing features page and filter on “advanced”. Naturally, apps could
predefine a bunch of the most useful Ul-discovery/navigation views and include
these as standard pages in the app’s set of Ul pages.

I'm sure there are a set of standard search keywords and views we could define
that would be generally useful across a wide range of applications, and this would
be a useful standard to set. We should also pursue work on a more general meta-
content language to enable intelligent searching, navigation, and view synthesis.

Next Steps

While this memo has covered a lot of ground, for the most part believe it
represents thinking that is evolutionary and that builds on things we’ve done so
far, or known we want to do..

The desktop model is a generalization of the Memphis model and from a Ul
perspective is backwards compatible with it (mainly itis a superset). It should be
straightforward to flesh out the Ul details of what I’m proposing.

The new shell frame and its various parts—like navigation and tracking panes and
the customizable menus and toolbars—are mostly generalizations of existing

features we have implemented in vanous places, including the Memphis shell and
Office. Likewise, the Notes-like searching features are just transplants of features

" MS-PCA 1379033
49 HIGHLY con%%{;,ggsi

Darryl Rubin Microsoft Confidential 3/10/97

we’ve already implemented in Outlook and Exchange, or else have wanted to.
Fleshing out Ul details for al) these things should be straightforward.

The biggest design steps I"ve proposed here concern how we can

1) Presenta single model for folders and documents

2) Exploit rich linking to unify a varety of operations and to support
collaboration

3) Usea“single frame” Ul discipline to reduce Ul clutter, achieve a more web-
Jike model, unify the treatment of windows and in place frame, and enable the
“web UI” model. ‘

The single document/folder model is of course the conceptual basts for our
existing efforts to provide a web-centric desktop. This is what web view is all
about, at least as a baby step. The next step is to more fully realize the model, as
I’ve outlined in this memo.

The rich linking features are for the most part just a matter of making the detail Ul
decisions and writing the code. The biggest Ul challenge here is handling
external versus internal links—how well can we keep the user from needing to
make choices about what type of link to use. I think we can solve this pretty well
by keying the choice off of the specific task the user is performing.

Probably the biggest technical risk concemns the single frame model. A Jot here
hangs on our ability to define the right Ul framework so that a full-bore frame
negotiation model can really work. I think we can do this, because it’s an
extension of things we already do in Wordmail and OLE in place editing.

The idea of control pane hiding at 2 window level is something we’ll need to
prove out through experimentation. This is a major element of how I'm
suggesting we curc Ul clutter, but it has no bearing on any of the other Ul features
I’ve discussed.

Another challenge to the shell frame Ul modet is Docfile performance. Since the
single frame model depends heavily on frame negotiation, and the most logical
starting point for this is Docfile, we need to solve the Docfile performance
problems or come up with an alternative design.

Finally, to truly exploit a web UI model for app features, much work needs to be
done in reorganizing apps as a set of linked pages that host Ul controls. To
facilitate this, we need 10 define the conventions for links, keywords, and other
meta-information that will be the basis for navigation, searching, and viewing the
app Ul pages.

50 " MS-PCA 1379034
HIGHLY coréuz’)g?gi

