PLAINTIFF’'S
EXHIBIT

1%

Comes v. Microsoft

- T

o et - T B

From: Eric Rudder

Sent: Thursday, July 15, 1999 9:56 AM
To: Bill Gates

Subject: latest draft, just to have

The Next Wave.doc

MS~PCA 1367268
HIGHLY CONFIDENTIAL

The Next Wave

We have many good new technologies being developed in our product pipeline. However, we seem to be
lacking a strategy where we make the whole greater than the sum of its parts. At a time when our core
franchises are under such strong attack from competitors, this situation is especially painful.

We do not have the huxury of time to change our existing product plans over the next year or so, but
looking beyond that, we must set some goals for how our next generation of products will renew their
leadership positions.

1 Feedback Cycles

Historically, we’ve had incredible success when we’ve built a Virtuous Loop consisting of a great version
of Windows, great tools to deliver applications, great applications, and Internet services which enhance
those applications. This never-ending cycle of feedback is something we need to continue to draw upon as
a company, even as our divisions enjoy ever increasing autonomy.

1.1 Traditional Cycles

Our traditional cycle of opportunity goes something as follows:

ISV’s consume the Windows API. IHV’s consume the Windows DDI. OEM’s consume the Windows OS
itself. The OEMs do not want to invest in proprietary OS projects because their commodity business mode!
forces them to stay lean, mean, and focused on very quick design turnarounds and supply chain
management. ISV’s want an OS because they don't want to waste time and effort on tracking rapid
innovations in other vendors' software, or in hardware. [HV’s want an OS because they like the leverage
that comes from a standardized socket where they can quickly and compatibly plug in their inventions.
Windows provides a common ground for all three of these industries - it makes the combined market more
efficient.

Our competitors are exploiting similar cycles of their own:

Sun - sells network-centric server hardware, and the Java platform, which links service-producers to
application programmers in a network-centric way. Service providers like the safe, standardized, and
cross-platform socket that EJB, Jini, and JavaBeans provide. Application programmers like the availability
of many services in a clean, modemn, component-based API, and the consistency of the extensibility model
with the underlying platform. Corporate customers who need code-based server solutions don't want to
recreate this extensible platform, and so they adopt Java. Note the similarity to the Microsoft model - and
note the similarity to the URT strategy. This means that our best bet is to compete head-on, rather than to
coopt.

Oracle - sells database software, joins corporate producer of data/biz logic to integrators. commoditizes the
hardware/os. The more that you put in the database, the better the integration story becomes. Oracle has
co-opted Java - they use it and market it. Oracle will also co-opt the NT wave. Neither Java nor NT
threaten Oracle's underlying circle, and so by co-opting them, they use their competitors' strengths to
increase their own strength.

IBM - sells reliable hardware/software. Corporations that must depend upon computers buy IBM's
products and services.

MS-PCA 1367269
HIGHLY CONFIDENTIAL

Cisco - sells the equipment that makes the internet run. Businesses are embracing internet delivery of their
services. Hardware vendors are making "appliance like” devices that use network attachments and standard
protocols to deliver their function, whether these be server clusters, cellphones, settop boxes, or PC
peripherals. ISPs and carriers want to offer the best set of mternet services to their customers, so they buy
Cisco. Network operators and carriers are consolidating, creating huge pools of customers. Cisco will
coopt any and all operating systems - they are just network leaf nodes.

o
We can learn from the cycles that are being created by other our competitors that exploit network effects
other than our traditional one. These are important to understand not only for their impact, but also for the
opportunities that they present. '

1.2 The Cycle of the Web

We have a very valuable corporate asset in the form of our understanding of what makes an application and
how to build good apps. But we are still trying to push this knowledge into the OS, rather than trying to
push it into the web. MS should be focused on building "hosted" apps, on understanding "webified" apps,
and on building or investing in infrastructure for networks (including app services).

The web model includes many of the same players, but there are some new ones as well, such as ISP’s. The
OS has increasingly become marginalized, making weaker alternatives, such as Linux, more appealing than
they should be. ISV’s now consume "Web API's.” IHV’s "plug in" using network protocols, and the
.OEMs are facing commodity pricing like never before. IHV’s used to make boards that conformed to PC
bus specs; but now they make network appliances. ISV’s used to build Windows apps; now they create
sites and front ends that exploit open protocols. ISP’s are beginning to take on the role of distributor,
which underlines the OEMs’ tenuous position. While the OS is still important for OEMs, the value of this
element is diminished, due to both price pressure and to the fact that open protocols make the
implementation of the entire machine replaceable. We have in some sense, failed to make ISP’s a key part
of our cycle, in part because we compete with them, but mainly because these companies are much more
interested in common glue for communications than in glue for applications, and because of this, they tie
themselves to companies like Cisco.

1.3 Reinvigorating the MS Cycle

[This section must tie in with the “Why” slide. I’'m not sure if this gives you the Linux/Java thing like you
want.]

The competitive situation we are currently facing is a tough one. We are in danger of losing our desktop
franchise, unless we take vital steps to renew it. We must exploit the integration of our assets, and make
the whole greater than the sum of its parts. Yet I fear we are not on the course needed to make us
successful here.

Much of our new platform thinking is actually being done by the Tools group, especially with COM+. Yet
our applications group doesn’t find much of the COM+ work relevant to their short term, and our groups in
CCQG aren’t basing their future plans on the work being done by this group either. In addition, none of this

work reaches out in a new way to ISP’s, to include them in a new cycle of prosperity.

There are several key imperatives we must deliver on, in order to refresh and renew the Windows franchise.
While there is an incredible amount of good work that is going on, I want to take the opportunity to
prioritize our efforts, and focus on five key areas.

These areas are: The User Experience, Establishing the Windows Schema, Manageability, Delivering a
Clear and Compelling Message to Developers, and Building Internet Scale Services.

MS-PCA 1367270
HIGHLY CONFIDENTIAL

[Maybe we can make the initiatives tie to the Cycle elements:
OS — User Experience
ISV — Developer Message and Schema
ISP — Internet Service
IHV — Manageability?]

Picking a small number of areas to focus on will help us prioritize, and should help amplify our most
important messages, both internally, and externally. :

2 The User Experience

We must innovate in the user interface, as well as continue to attack some of the complexity that we (and
indeed, the entire industry) have created.

2.1 User Interface

Windows has long presented a rich user interface that has been embraced and adopted by both end users
and application developers. With the rise in popularity of web-based paradigms, developers are now
building applications that do not uniquely leverage our UI infrastructure. HTML delivery of U is seen to
be a universal panacea, because it theoretically allows for greater system independence in all ways ~
operating system, graphics capability, browser version, device form factor, etc. The fact that this is an
illusion does not make our task any simpler. We must compel ISV's, both “traditional” and “modern,” to
embrace our Ul innovations. Our challenge is no less than the need to re-establish thought leadership in
user interface design.

We are currently investing in new UI design in a few different areas. We can deliver many aspects of these
innovations in Millennium and refine them in Neptune, so long as our ‘high concepts’ are successful.
Among the user interface initiatives in the company today are:

¢ Neptune — Activity Centers, etc.
e ePad — New metaphor of links
® Agent - Engaging the user in a dialogue

Our goals for the next generation of UI must take the best from all of these efforts, and deliver an
mcredibly compelling overall experience for both the novice and the experienced user. Some specific goals
are outlined below.

2.1.1 User Interface Goals

2.1.1.1 Significantly simpler :
This doesn’t just mean losing a few controls. The web UI is popular and successful because it is not based
on any high concepts. If there’s a link, it's underlined, and clicking on it takes you to where the link points.
Every user understands that. There is no right click or double click metaphor on the web. That doesn’t
mean that these concepts are wrong, just pethaps over-used or chosen as keys to fundamental actions (like
double clicking an application on the desktop to open it). The vatue added by these more difficult concepts
is clear — most customers appear to like context menus, and are happy to right click to get them. Customers
do not appear to like a lot of windows, though. :

Like the web, it means being able to pause halfway through a task and resume it later, or abort it altogether.
It means always being able to go back and change things, so that no user action is committed until the very
final stage.

21.1.2 Adaptable

The user interface must be able to take full advantage of whatever device it is rendered on— a big screen
with cool graphics capabilities must be able to be utilized to the full, yet the same code must run perfectly
adequately on PDAs, cellphones, laptops, etc. :

MS-PCA 1367271
HIGHLY CONFIDENTIAL

2.1.1.3 Contextual .

The UI must present itself contextually, so that a one-task function presents only the UI relevant to it (such
as a book reader), with other UI facilities hidden but always available, whereas customers higher up the
functionality scale might want to have easier access to more complex UI functions.

The mouse and keyboard aren't the only input devices. PDA’s have caused pens once again to become
popular, so our UT must incorporate facilities that take advantage of a pen if it is present

We must make the local versus Web experience seamless, so that viewing and editing Office docurents
feels the same — is the same ~ as viewing and editing web pages. Therefore, we must also adopt many of
the Ul principles found on the web, some of which may have significant impact, such as the mixture of
content and control/navigation elements on a page. Clearly, the reverse is true — Windows can leverage the
web, so that web pages can be used to add to the user experience in Windows, which means that Integration
must be much tighter than we have today.

2.1.1.4 Customizable

The UT has to be far more customizable than it is in Windows today. Tools must be provided to allow user
interface to be created and edited as easily as content, and in some cases indistinguishable from content (so
that forms, web pages and generic Ul elements are all treated the same way). Additionally, customers will
want to customize Ul in other ways, such as adding their own annotations to it

2.1.1.5 Include Rich new innovations

This includes automatically adaptive UI that determines device characteristics, including form factor, and
renders itself accordingly. If the UI designer can author once and know that his user interface wil] work
across a range of devices, we have a win. So, this likely means that UI is itself declarative, allowing itself
to be transformed to the appropriate set of UI elements and features when it ‘lands’ on a device. The Ul
needs to inchude mechanisms to integrate text, audio and video, so that one could for example have an
audio tool tip as easily as one has a textual one. Each of these features must be easily accessible to
application developers. Perhaps the Ul itself incorporates real time collaboration features, so that the
content of a control on a page could perhaps be bound to a URL.

2.1.1.6 Combine the Best of Windows with the best of the Web

We must be the owners and progenitors of a new Ul style, “WinWeb”, analogous to the Windows (and
Macintosh) styles, so that a developer has definitive guidelines about how to construct the Ul of a
compliant application. The guidelines should include rich samples that show developers how to incorporate
these features into new applications, and must provide adequate scope for extension. It is vital that such a
style guide be an evolved form of the web UT style, and must add to it rather than changing away from it

2.1.2 Roadmap

It is not plausible that all of this can happen in the Millennium release of Windows, It may be that we can
take some evolutionary steps there, perhaps a few revolutionary ones, and then really drive forward in
Neptune. Take one of the most promising areas for Ul innovation: Activity Centers. We should define the
basic concept in Millennium, create a few to drive home the principle, and ensure that ISVs (OEMs?) can
add their own. We may even be able to drive an industry akin to WinAMP skins in this area if a) we make
activity centers compelling enough, b) we make it easy for ISV to create and publish them, and ¢) we
leave scope for them to do this.

So part of this will be to define the set of activity centers that we want for Milleanfum (which ought to be a
subset of those we want for Neptune), decide which ones we can usefully farm out, and then pronmigate
the concept as widely as possible so that interest is created. But we also need to tie activity centers to
Windows, so that they can’t just be arbitrarily created and used on any system regardless of whether it’s
ours or not. This is hard, unless we create a UI framework that is easy, extensible and partially supportable
elsewhere (so that, for example, a nmuch-diminished activity center experience would be possible on IE4, 5

MS-PCA 1367272
HIGHLY CONFIDENTIAL

and Nav 4, 5 systems). Activity centers should also be extensible, so that existing ones can be customized
and enhanced.

We also need to provide some of the other Ul innovations in Millennium; it doesn’t seem to greata
technical step to have Agent presume the role of the Run option on the Start menu, for example, or to make
sure that many of the pen and stylus based Ul innovations from PDAs make their way into mainstream
Windows.

Now is also the time to make some foray into the adaptive UI arena. Much of what I have said before tends
towards a Ul definition mechanism that is declarative and therefore fairly easily transformable. We already
have some of the mechanisms in place to do this, even m IES. With the XML and XSL technologies
therein, we can create defmitions of UI in XML which can be rendered differently depending upon the XSL
transformation which is applied to them. So, if we were to define (and/or adopt) an XML-based UI
defmition language (c.f. RCML in NT and Netscape’s XUL), we can both create and enable the creation of
device-adaptive U, at least to some extent. This would be a pragmatic move in Millennfum, and it allows
for far greater advances — such as excellent tools support — in the Neptune timeframe. It also allows us to
define a schema for UI which we can publish, both as a style guide and as a defining mechanism.

In the longer term, we need to determine how successful the smaller UI enhancements in Millennium
turned out to be, and leverage those that are clearly working. Others should be discarded quickly, as we did
" with channels and the active desktop between IE4 and IES.

If Neptune can begin to turn the UI into a collaborative mix, that will be interesting. This is the idea where
a control/form/page is linked — two-way - to live content. Ther, as we work on the content as a group, so
we all see the changes. We’d want to have some very clever technology (e.g. DAV enhancements) behind
this so that one user’s changes aren’t immediately destructive to another user’s, but we fundamentally
know how to do that.

Perhaps the biggest challenge for us, which needs to be resolved by Neptune, is exactly how legacy apps
(that is, those we are using today!) fit into this framework.

[Don’t quite know what to do with the AC text below.]
One of the most promising areas is Activity Centers.
We need to think about answers to the following:

Can ISV's create new Activity Centers? We won'’t be able to do them all for Millennium or even for
Neptune. Perhaps we want to partner with folks to write a couple of Activity Centers. Maybe HRD writes
a couple for us or there becomes a thriving market for Windows Activity Centers that custorers buy.
There is a broad list of key task centers for consumers. They include games, photos, music, video,
communications, shopping, personal finance, and home productivity. If we decide to extend this metaphor
to business, then there are probably others as well. We must define the core services and business models
that enable others to create them. -

Which centers are at the heart of the Windows Experience? As we think about our Activity Center
investments, we need to think of them on a continuum. Some we will deliver in Millennium, and we will
deliver more in Neptune. We need to be able to prioritize which ones we deliver on.

How does "legacy” content fit in with the new paradigm? We need to decide if we are Jjust introducing
another new concept, or if indeed, all applications are now invoked from activity centers.

What makes a new application a great addition to an activity center? A clear, compelling message to
ISV's is critical. ‘

MS-
mcnnngA 1367273

2.2 Attacking Complexity

In addition to defining some new areas of excitement, like Activity Centers, there are some other areas
where we need to contimue to enhance the user ekperience. I will mention just a few. Our PC Health
injitiative means cleaning up the “error” experience, both preventing errors, and truly helping to fix
problems when they occur. We need to continue to leverage Windows Update. We need to once and for
all eliminate the problem of “DLL Hell” - this means delivering COM+ Deployment, a.k.a. Fusion, in
timely manner.

2.3 A Big Bet

Talk about speech/hw/vision here?

3 Establishing the Windows Schema

The idea of schema is straightforward: it allows us to make intelligent use of data, so that greater
integration is possible, data can be put to more uses more casily and more data becomes accessible (through
late binding). Once we know that data exists, we want to use it. If we know nothing about that data, we’re
pretty much hamstrung. If, on the other hand, that data has an identifiable schema, then we can make
intelligent use of it. For many of the kinds of data we would store on the typical Windows machine, we’d
also have the appropriate set of schema definitions stored as a part of Windows. There will be standard
schema for a number of common things; where these things are truly generic, we should define the
standard. But each standard must also be extensible, and we must make many of those extensions. We
ensure our ability to add value by ensuring that we are masters of the schema. We can move away from
complex object models, complex APIs and proprietary formats, replacing them all by schema, but we only
get value in doing so if we effectively own the schema. Of course, we’ll publish those schema, and perhaps
some will be totally standard, totally available for general use. On the other hand, many schema will be
private to us, legally owned by us, and indubitably controlled by us. That way, there is a series of natural
leverage points for our products: if you have Windows, you'll want to get Office; if you bave Office, you’ll
want to use our services; if you use our services, you’ll want to run a CE-based PDA, etc.

We have a strong tradition of owning the platform by owning the ISV, because they write to our API. Now
that APT advantage is being eroded, and it’s actually highly unlikely that another foray into the API world
(c.f. WFC) will win us any more customers. On the other hand, if we show customers, developers and
system integrators the brave new world of developing, deploying and using Windows systems where
applications make use of the standard set of schema we provide in Windows, we effectively move the API
battle to a different front — the schema is the API. Don’t be fooled ~ we still have competitors, as both IBM
and Oracle understand this point. But it is not clear yet that everyone does, and of course it flies in the face
of Sun’s Java strategy — hence Sun’s constant and consistent scrambling to tie XML and Java inexorably.

In the long term, then, we ntust ensure that we have defined schema for all objects and events of generic
use — our systemns (this ranges from schema for cards in a PC through schema for UT generation and schema
for management events, to schema for system calls), our applications (so that Word’s object model, for
example, is supplanted by its schema — one can always get to the OM from the schema, if necessary), and
our services (we’ll define a name, an address, a hotmail user, a credit card, etc.)

Once we have schema defined for everything interesting, and applications that make use of these schema,
we can make data more usable, more accessible. For example, Microsoft software can pull data out of web
pages from Microsoft services — and make semantic sense of it. This is a hard thing to do in the world of
HTML without prior knowledge of the page. Pages change, so systems relying on certain Jayouts are
fragile. Further, consider how useful Office can be when it can make sense of what you type — it could
present a list of actions one can do on an address, for example.

When devices have schema attached to them — printers, light bulbs, refrigerators — they become services
that can be interrogated and driven through their schema.

MS-PCA 1367274
HIGHLY CONFIDENTIAL

In order to make schema truly useful, definition alone is not enough. Schema need to be customizable and
annotatable by customers, they need to be queryable, and of course they need to be easy to find as new
items appear on a customer’s computer. In addition, we need to provide comprehensive systems for
creating and editing schema and transforming between them. The transformation step allows us to take data
in one schema and convert it to another automatically, so it works most effectively if we can use the
schema to drive the transformation, rather than relying on schema authors to provide their own
transformation information.

Therefore the actions we must take include creation and publication (on a universally accessible web
server) of the most critical sets of schetna, ensuring that we have ~ and keep - IPR where necessary, making
sure that Windows, Office and the browser are all totally schema-aware, creation of tools to create and
manipulate schema, make sure that our programming languages interact with schema (e.g. by creating an
appropriate object model, late bound when necessary, on consumption of a schema), put in the public
domain non-IPRd subsets of those schema we want to proliferate generically, and leverage the hell out of
them in our Ul and functional innovations over the next few product cycles. Each cycle must evolve from
those prior to it, so that Office 10 and Millennium do the basics and show the way; Neptune and subsequent
releases of Office, Back Office and SQL Server consolidate our lead. The first release of PKM needs to
include ways of searching on an item’s schema, making the whole search experience that much more
fuifilling.

Schema must give us standard ways of describing objects and events. We must have services on top of
these things (logging, query) to make them useful.

a) What generic tool do | use to browse management information? How does this relate to MMC?

b} Show me how | program against our management schema - do our languages see the URL descriptions
automatically?

c) What leadership Is there to suggest what it would mean for Outiook to support our scheme approach?
d) Where are schemas stored? How are they browsed? How does this related to repository?

Although its nice to have standards for synching data I want to have a Microsoft schema for calendar/personal/contacts that
is NOT part of any standard. I want us to let people customize the schema and NOT have that part of any standard for
replication. I want all of our devices to share the rich standand schema and the ABILITY to custornize schema. We need to
get scherna and schema costomization into our PDA and Outlook strategies as part of cleaning up the
addressbook/wab/pab/directory mess we have right now.

I want these to be key key proof points for why someone who uses OFFICE should use our PDA and SERVICES.

This is taking a lot of steps but it is key to succeeding. We only want the commoadity standard to go a LIMITED distance.

One of the great values that "local processing™ power and our softwars can provide is dealing with information
the user in presented and helping the user make connections.

For example being able to take a name that shows up In a document | create and give me all the actions that
might relate to that name.

We need to have a practical schema to belongs to us (other browsers or OSes or productivity software can't
copy it without a license - we need legal to make sure it is protected).

Web sites can use It and will be encourage to use it.

This fits in pretty well with the idea of seif describing objects and activity centers.

To be specific whenever a BOOK, SOMETHING YOU CAN BUY, GROUP NAME, COMPANY NAME,
LOCATION, PERSON NAME, ADDRESS, TIME, APPOINTMENT or other common oblect shows up we should
have descriptive Information that we help provide and ask to have provided.

There is a synthesis here between the idea of SEARCH, SCHEMA, FACTOIDS, XML and ACTIVITY
CENTERS.

To make this happen a number of elements have to come together:

a) Someone has to define these simple schemas and get them protected and figure out how to get broad
support.

MS-
arach 1367275

For example all our emal cllents ned to be part of this. Getting them to a common schema an these things is a
basic

thing we need to do anyway. | include PDAs In this.)

b) Windows Itseif (in the browser code) needs to support these including some "Autoformat/factoid® code.

¢) Office has to allow for *objects” to be expressad in the XML hidden text and have Autoformat/Factoid code
help recognize objects

d) We need to decide our role in creating the services that these things connect to. This is a HUGE
underexplolted asset that will bring up all the classic questions of how hard coded s it (answer: TOTALLY - no
QEM change - connected to an MS URL and then redirected to the partner in that country/area)

Use of NL and Schema in Office, PKM, and MSN

First, we are working on the use of both NL (logical form ala Truffie) and schema to help improve search resuilts in
the PKM server and the Office client in the 010 timeframe. As an initia use of schema, we hope to use knowledge
of the exchange/outlook schema and perhaps the schema of at most one or two other products to answer NL queries
that span structured and Full Text data. For example, *Show me email from BillG conceming MSN search” would
retum this emall chain.

The starting point for this schema will be a subset of the conceptual schema for Person Places and Time that was
worked on with the schema team in DAPD (Kaith Short). In particular, we will use those parts that deal with the
actual schemas in place today for objects in the systems of Interest. We don't at this point propose to own the
standardization effort for a conceptual schema across MSFT.

Relatedly, in this timeframe we won't have much of an authoring mode! for people to add new data sources mapped
into existing conceptual schema. This will be done via XML that will likely be hard for “mere mortals” to deal with,

We will support the use of factoid analysis and normalization to Improve query results. So, “1/7/99" can match
"during January”.

Another extremely important Office 10 feature is the use of Factoid analysis to aliow our applications to highlight the
associated text and users to right click off to appropriate functions based on the type of the factoid. This will be a

very cool feature. Additionally, we are looking into whether or not the factoids can be exposed to custom app
builders through the Office object model.

We are a littie late in the PKM and Office 10 planning process with the proposal of these features. Nonetheless, we
expect to have the above plan firmly in place and hopefully accepted for the 010 timeframe by the BPG product
teams this month. After that, we intend to engage more fully with MSN to see if any of these techniques can help

there as well. Of particular interest wilt be how to use our NL technology to integrate with and/or replace
RealNames.

4 Manageability

(1 still can’t get this section to fit. Maybe it's a sign that this really isn’t in the top3?]
UpnP?

Distributed Events

Policy

Enterprise Event Log

Instrumentation [WMI, etc.]

Make it more appealing to include lots of MS infrastmcture?

5 Clear developer message

We must have a clear developer message, which will help us enormously in competing with Java. Part of
this must include a cohesive presentation strategy (viz. forms)

5.1 API
WEFC vs. Win?

- 267276
Sektaed

5.2 Storage

Neptune will be the first chance we get to deliver our improved storage system, based on the Platinum
store. What advantages do we create by deliverihg this as 4 native feature? (e.g. Faster?)

I wish we could get team server and Office 10 to share a common vision but a lot of things stand in the way of
that.

! think people who do websites want or big documents want a team server like capability.

We should Insist that all teamserver forms fit into our new programming framework and as much as possible
they do their apps in that framework.

- Building bridges between our two stores.

5.3 Forms

Some text around formns.

Here are some goals for an ideal forms strategy.

For access, take the capabilities of the native forms and datapages and bring them together in one forms
approach.

For VB, take 'ihe capabilities of the native forms and the triedit forms and bring tﬁem together in one forms
approach.

Have the ability of "Windows Terminal Server” - that is rich rendering can be done on the server and shipped
down to a client - this featurs cannot be based on some commeditized open standard. Our rich rendering
cannot be given out to a standards effort. We have to have a presentation asset.

Support rich UL. It CANNOT just be the browser.

Have the ability to let you design "down level forms” for HTML 3.2. Having levels in between say IE 6 and HTML
3.2 Is not good.

Become the forms approach we use in the Neptune shell.

Be based on XML.

Altow for migration of MFC users?

Support the WFC apis in the form package? The devsloper group cancelled their VSFORMS eﬁo¢.

<

Support docurnent editing on the same surface (Netdocs). This is a very demanding requirement. it also means
we need to have a 3 level strategy ideally based on one code base. The 3 evels are: 1. Frae browser/Standards
based 2. Windows browser 3. Offica browser (the version with the editing capabilities). | don't want #3 and #2 to
be the same because it makes it too asy to build Office capability.

Allow for migration of GDI/User developers. {realtionship to Hwnd/Window management/RC files} (activeX
controis?) Can the compatiblity stuff be done as a layer independent of the forms package if we do it the right
way?

The support for this forms engine on WinCE devices Is an interesting problem but not the most critical, People
talk about expressing Ul in a more abstract way to deal with different sceeen sizes. It is unclear if our Forms
strategy needs to include this. :

A forms package that we get a nice end user development tool for that lets us compete with Notes. Forms3
became a dead end and itis hurting us versus Lotus.

We can't really promote our new URT based platform without a clear message about FORMs so we have to get
this done to be at the starting line.

By defauit we are pushing people to use simple HTML which is promoting the move away from our platform

| can see different strategies.

- 2672717
SIS

A_ Try to use a common Trident code base to be all three things a) Document surface, b) HTML. displayer c)
XML forms package. We seem to have an overload right now where we get (B) but messy (a) and no {c) from
the one code base.

B. Keep Trident as HTML focused. Fork off a version to be the XML forms package spiitting the world. Try to
use conditional assembly for the document display.

C, Keep Trident as HTML focused. Create a new code base independent of Trident for the XML
forms/document surface. Use some of the Cooper/Peters or Tony Willlams stuff as a starting point.

Maybe I am trying to do too much with one package however | see scanarios where people want to do
Ul/Forms and mail.

5.4 Data Access

6 Building Internet Services

Increasingly, MSN will play an important role in how an end user perceives the “Microsoft Experience.”
MSN services must enhance the experience our customers have with all of our products.

6.1 Communications

Neptune must help us prioritize some of the variety of communications technologies that we’ve delivered —
in particular, we must rationalize our multitude of email clients, and we must decide what the future of
NetMeeting becomes, in relation to Chat, IM, etc.

1 think our current strategy is as follows:

1. Cutlook express. [t will be expanded into scheduling because it has to for JUMP integration and competition.
It will continue to be free and simpler to use than Outlook. It will continue to have its own store.

2. Neptune. The shell will be integrated and include email handling and flle management operations.

3. Outlook. We will spend 2 years improving this for Office 10 but it will not have schema, it will not use standard
forms :
(because we are a mess on those).

4. Netdocs. A strange part of our strategy - a Ul of its own that isn’t different enough to want to switch to but
different enough to releam.
Kind of like a lot of our developer strategies.

5. Outiook Web Access. The best of thesa for many reasons - it can be built on our server strategy. it can be
the show case for using .

client functionality when it is there. It can make our Hotmail/Exchange strategies come together. it does require
depending on getting

our platform stuff good enough to make this code run on a dlient and make it better.

I am not including the email cllent you have on the PDA. | am not including the email client you have in Project
(with the funny web Ul stuff).

I am not including WebTV email.

We cannot afford this fragmentation. | want to see us get behind some combination of 4&5 and get the Neptune
people bought into using a subset of this for their shell.

| do not think Outlook client as currently written Is a code base we should invest in AT ALL.

It doesn't let people easlly update their maii client. It doesn't support our forms strategy in an integrated way.

| also think the Outiook express cllent is a could base we should stop investing in. .

We should put the resources on Outlook Web Access and solve the problems that it has and use that code
base for:

a) Free email dient

MS-PCA 1367278

HIGHLY CONFIDENTIAL

b) Free email service
¢) MSN email client
d) PDA smail client
8) Office email client

There are a lot of pluses to this approach that far outweigh the negatives.

| understand that even shifting resources we may not solve the Offine use or become as rich as Outlook by
Platinum. However by Office 10 timeframe we should be able to solve those problems and have a real
foundation for the future.

Lotus has very very few resources on their email dient because they have a rich framework they use and write
script We have to pursue the same apporach. Otherwise we will move too siow and not give customers the
flexibility they want.

This should be the first part of Office that can just "update® itself as part of the experience and be roamable as
well. This fits in with our service plans as weil.

Communication and community - Timely communication is one of the most deeply desired and
highly valued capabilities in any group, where we use communication to establish communities
for shared gain and for protection. Phone calls, pagers, emails, and real-time messages all
represent common modes of digital communication, and all can be used in a group. While a
personal inbox and private individual-to-individual communications will always be impartant, there
are also numerous interesting scenarios that involve group communications and an open social
context. Family activities, for example, such as scheduling, coordination, record keeping, and
finances, can all be usefully performed as a group. It is trust in the quality and veracity of
communication that enables communities like the family ta form and flourish online.

6.2 Commerce

6.3 Megaserver

Roaming access to network-delivered services is a liberating experience: people bring laptops to
each other's offices and manage calendars, review emalil, and exchange files face-to-face.
People bring palm computers into living rooms or public stadiums and have services beamed to
them. Meetings in conference rooms or in convention centers will be more productive as well
when everyone is online at the same time. There is no reason that experiences at work, at home,
and in public would not all be enhanced, given socially apt devices.

Users and their virtual agents prefer to roam - Devices roam against a fixed network background
that includes things such as payphones, AV, wireless network, power grid, telephone net, cable
television, and even public computing kiosks. This background also has movable elements -
pdas, cars, celiphones, and remote controls to name a few.

Clients, storage, and even peripherals all might move- - In the world described above, devices are
not dedicated to a single user. To make matters worse, with the emergence of easy to move,
ultra-reliable, appliance-like peripherals, peripheral devices no longer have a static one-to-one
relationship with the computers that are using them. These two factors combine to mean that
driver models and support for dynamic reconfiguration are even more critical than they have been
in the past; the requirements for reconfigurability are often directly opposed to the requirements
for stability, responsiveness, and predictability.

- 279
HS-PCA 1367273

7 Summary

We have a long way to go and a short time to gét there ...

MS-PCA 1367280

HIGHLY CONFIDENTIAL

Crazy brainstorm — what abt a Matrix — what abt one for short term and long term? Something like:

Ul Schema Dev Message Manageability Internet
Services
DavidCol | Owner New Ul exploits | Windows User experience | Builds Ul to
it initializes, uses | is managed,; exploit
and distributes desktop roams,
key etc.
infrastructure

BrianV Biz windows Management New apps are Owner Provides
supports same tools, logs, etc. inherently tools to
new UI metaphors | fit into “manageable.” manage

framework

DavidV Tools and Tools to build, Owner New apps are Provides
classlibs to help extend, and map inherently tools to
support new UL schema; tools for “manageable.” create
metaphors apps to exploit :

SteveSi Office is the Owner Office supports | Office Exploits
showcase model applications and | key services
application documents are provided

managed by this | (email,
framework search, etc.)

JonDe MSN provides the | Provides services | Uses new Key client of Owner
backend services | for search, etc. technologies new features
for new Ul
metaphors

MS-PCA 1367281

HIGHLY CONFIDENTIAL

