
ISent: Mon, 5tl 111998 2:30 PM
ITo: Nathan Myhrvold; Bill Gales; Edc Rudder= Jim Gray; Gordon Bell; Rick Rashid;
I Chuck Thacker; Roger Needham; Paul Madtz; Jim AIIchin (Exchange); Gregory
I Faust; Dan Rosen; Greg Maffei; Chades Simonyi; Mike Murray
ISubject: RE: Free software economics: The DollarOS

Nathan:
A stimulating and well-reasoned argument for priced-soltwam.

Two things trouble me about the situation you describe:

(1) Linix is a cult that captures the best*and-brightest kids.
This is anecdotal, but I see it regularly in 10-year-olds, high schoolers,

and University faculty comments on inbound students.
The Linix cult views Solaris as bad and Windows as evil or stupid.
SUN has put the Solaris source on public view

(5005 gets you the CD, and you can apply that towards the purchase of SUN gear.)
The contract is draconian (SUN owns the rights to derivative works) but no one seems to

notice that.
All of this is simply bad for us.
We have dramatically rela~ed the rules for access to NT Source,

but we are still a long way from our competitors.
Solaris is "scale" player in the OS space.
Linix is a huge training ground and experimental laboratory for Sotaris.
Suggestion: We need to find an analog to create a "cult" of core windows developers.

(2) I assume Windows is heading for a on dollar OS: the DollarOS.
Currently we sell about 30 million W95, NTs, WINCE per year.
I assume that W98 and NT will converge

Following Moore’s law, we will be selling 100 M WiinNTsfyear in 5 years.
I also hope that WINCE takes over the PDA space and so it will sell 100 M/year in 5 years.
These do not seem radical numbers to me.
But, I also expect that each disk driv~ and NIC will want to run either NT or WinCE.

(right now Wind River is the OS of choice here and it is quite pdcey and not very good).
All these "peripherals" will have controllers that am supercomputers and will have

128MB of DRAM in that time frame.
So, all those microprocessors are going to want an OS, a network stack, security,

management, and TOOLS.
Tills trend could drive our volumes up 2x more to about 400 M units/year in 2003 (a wild and

optimistic guess).
But the trend requires CheapOS (say one dollar for a disk controller that cosls 305 to make

).
I assume WinCE_ is our move towards CheapOS and LiteOS but I also guess that we will

face a WinCE - NT
convergence ~n that timeframe.

All these numbers are HUGE volumes.
If the volumes go up 100x then prices could rationally drop 100x

(which is about rig~ for the dollar OS rather than the 255 OS).
So, I think we might be a VERY high volume and low-cost O,~ company in five years.

Jim
J=m Gray, Microsoft Research, 301 Howard St #830, SF CA 94105
tel. 415-778-8222 fax -8210 Gray@Microsoft. corn
http:ltresearch.m~crosoft.cornlbarc/.qray (Intranet. http;/../.msrl~roUl~S/barc’~

.... Original Message---

~Plaintiff’s Exhibit~

Comes V. Microsoft)
MS-CC-MDL 000000032123
HIGHLY CONFIDENTIAL

From: N atf~e n Myhrvold
Sent: Sunday, May 10, ~98 9:55 PM
To: Bilt Gates (billg), Eric Rudder; Jim Gray (gray), Gordon Bell (gbell), Rick Rashid (rasl~ld); Chuck

Thacker; Roger Needham; ’paulrna’, Jim AIIchin (jimall), Gregory Faun--t; ’Dan Rosen’, Greg
Maffe,, ’Charles Simony~ (chadess)’; ’M~ke Murray’

Subject-" Free software econon~lcs

Free software, or even software distributed in source form is a current cause celebre.
Netscape, Linux and others are doing it. Is this some sort ot trend?

There are two answers - one immediate and pragmatic and the other philosophical.

The pragmatic answer is that much of the "trend" towards free software is very likely due to
the novelty of the Internet. In the early days of the PC industry there was a period when
"Shareware". People like Jim Button and others developed word processors,
communications programs and all sorts of other so,ware on a shareware basis. It was
distributed by BBS systems (which were themselves powered by shareware). Richard
Stallman started the epic saga of Gnu. Th~s early stage of free software had its adherents -
and it too was a hot topic in the trade rags. Back then you could write a pretty decent word
processor with one or just a couple people so it could be supported on a shareware basis.
Over time this became less and less true, and shareware diminished in importance to just a
few areas. In any area of consequence a for-profit, paid for software companies using
normal channels took over the bulk of the market.

Fast forwarding to the present, the appearance of the Intemet caused yet another temporary
situation where a small number of people could create a very competitive product. Mosaic,
Apache and Linux fiorished during this period, just as shareware did in the earlier era. Once
again you could have a sol[ware product based on a very simple task - like serv4ng up a file
in response to HTTP.

I believe that most of the growth in Linux can be traced directly to these new Internet
appllcat=on areas where commercial soJtware companies have not yet created products so
demonstrably superior that they have obviated the niche occupied by f~ee software. Although
people claim that Linux is growing, my bet is that if you subtrecl out web servers and related
new niches, the growth is much more modest.

If this is so, then we can expect that over the next several years commercial software
companies will displace them because web servers will become far more interesting and
complex. Straight HTTP will get ever more complicated and extended. This has happened
with a vengence for the browser, and ~t will occur on the server too. If nobody can beat Linu×
and Apache with commercial products, then shame on all of us in the industry!

So, the pragmatic answer to the free so,are trend is to say WHAT TREND? Netscape’s
gambit to distribute source is too recent to say whether it will work or not. In the case of
some other products there is a definite growth trend, but this is explained most simply as a
transient effect where the Internet has made simple software viabie, and along with ~t free
software has become viable. This explains Apache, Linux and many other free soltware
packages. If I~istory is a guide, over lime somebody will find a way to make money from
these categories and the "trend" will reverse. However, even if it doesn’t there is no evidence
to date to suggest that this is something fundamental aboul software economics. It is more
about the historical artifact that H’I-rP and other protocols are so simplistic.

As much as I I=ke a smug dismissal like this, it does raise the philosophical question. What do
we know about the soJtware economics for free or cheap software? I will concentrate on
syslem software, but much of the same arguments apply to applications.

Today, system software is priced between 5% and 10% of the price of the hardware it runs

MS-CC-MDL 000000032124
HIGHLY CONFIDENTIAL

on. On smaller volume platforms that take a proprietary systems software approach (Apple,
Sun, SGI and so on), the true percentage is higher, g~ven that they must amoritize some
f[xed costs over a smaller base. This is compensated by the fact that proprietary hardware
margins often subsidize the soltware.

That level supports the wodd we know today - which has (my guess) a few tens of thousands
of people worldwide writing core operaling system software. Several times as many wrile
system-ish software which has a price level that is linked to the core operating system. It
also supports the current user base of 150 to 200 million users.

Consider two alternative wodds - one in which the operating system is much cheaper - say
0.5% to 1% of han~vare cost, and another in which ~t ~s tens times what it is today- at 50% to
100% of the hardware cost.

If you made this switch instantly, there would be some shocks to the system, but instead let’s
look at the steady state condition - as if the pricing models above had been long standing
traditions.

In CheapOS world, many fewer people would be working full time on system software,
because there would be no revenue to support them. Features and functionality which
support the current user base would consquently be lacking. Which means that the user base
would be much smaller.

Thus the total number of people working on system software is nonlinearly smaller - revenue
wise there would be 10X fewer systems programmers per PC. There also would be many
fewer PCs. Which means fewer variety of peripherals and other aspects of the industry.
The number of systems developers would be reduced from our present wodd by much more
than a factor often.

CheapOS wodd is a place wh=ch has a Iremendously smaller user base,and a tremendously
smaller computer industry. These days the tech sector drives the economy, but that wouldn~
be the case in CheapOS wodd.

Linux fans and other supporters of"free" software might have some arguments against this.

First, they might say that lhere would be millions of developers dorking with the free source.
The problem is that those incremental improvements done by small scale developers would
not be available to the market as a whole, because there would be nobody to integrate and
test the results. As we know, integration and testing does not scale gracefully. You can let
a million people hack your code, but gathering the improvements together so that each
costomer can get the benef’~ of ALL the work is a mammoth task. We have a ratio of
developers to testers of 1:1, so for millions of developers you’d better find millions of testers.

But it’s actually worse than that, because the integration and testing needs to coordinate
MUCH more than the developers do. You might be able to live with a million distributed
developers (albeit with a lot of wasted effort), but integrating all their work is a single task,
because any line of code may conflict in some unexpected way with some other line of
cede. This means you must have a highly coordinated effort of a million integrators and
testers. I’ve made it sound extreme by saying millions, but the same logic works for other
numbers - you need highly coordinated effort for integration and testing.

Presumably this is one of the things behind the Netscape free source code move (assuming
they think this way). At any rate it is the thinking behind my suggestion a couple years ago
at an exec retreat to do something similar with our browser. The slogan was "let a thousand
browsers bloom"- in my notion by letting people develop extensions on top of the browser
rather than hack the source.

MS-CC-MDL 000000032125
HIGHLY CONFIDENTIAL

Her~’s how it works. A thousand browsers spring forth from a thousand developers.
However, amidst this field of low flowers would be only one tall tree - the scale player who
could afford to do the integration and testing. In my version, where the customization would
occur mainly above a set of binary components, the value created by a scale p~ayer in those
components could flow to many of the customizers. Netscape’s source based model is even
more harsh - those who hack the source will have no way to integrate new Netscape releases
automatically. In this model the free source lets the developers pick up some fringe or niche
markets which Netscape wouldn’t get around to addressing. However, it comes a a ver~ high
cost because changes to the Netscape code base wilt cause the developers to re-integrate
their work. Meanwhile Netscepe itself remains preeminent because they are the scale player
within the context of their source. If that isn’t enough, I suspect that the fine print on the
terms of the source license also puts the 1ix in more directly.

Even if you could get enough coordination to integrate and test all that stuff, there is another
problem that an economist would point out- all that work doesn’L happen for free. The
volunteer army of Linux developers° and the hypothetical integration and testing center, have
some value on their time. Calling it "free" soflware is bogus - instead of paying money to a
software vendor, there is a hidden cost in the time of the users, or their organizations. If you
account for the total cost (including all the small developers, or the cost of the users making
their own mods, or the cost of users finding bugs rather than testing finding them) then "free"
software can get pretty costly.

Not only do you have to account for the costs - you must also recall that efficiency in
software development depends on scale. Many years ago I wrote a memo about leverage in
the software business. If you write software for yourself, then for every do,ar you spend,
you get a dollar’s worth of software (assuming you are competent). If you have a company
with N customers, it can afford to spend a lot more on development than the cost of of the
software to any one user. So, from the user’s perspective you get a lot of leverage. For a
typical Microsoft operating system the ratio is over a million to one - for $100 you get sottware
that cost $100 million (or more!) to develop. This miracle in leverage means that you have
software much belter than you could possibly afford to develop for yourseff. It occurs, of
course, because of the low marginal cost of producing intellectual property.

if you take the same number of developers and spread them across many small software
houses or end user development, you start losing the leverage because each individual dollar
spent on development gets distributed to only a small part of the market. The million to one
leverage is the flip side of the massive integration and testing effort to create a uniform
product. You ONLY get lhe low marginal cost of distribution to incremental users if all the
users get the SAME product. Which means the features for those users must be integrated
and tested together.

There are other scale effects as well - management is an exampte. An organization can
concentrate very skilled talent - if every user hacks their own OS, very few of them will
manage the work as well as a professional would. Netscape has every economic reason to
attract better managers than any of the companies hacking on their browser source.

There are various other defenses one can mount for CheapOS world. Many of today’s
systems programmers compete with each other because making an operating system is a
good business. In CheapOS world you could postulate some sort of socialist ideal where the
OS is some Linux like public domain thing. Thus even though CheapOS world has many
fewer developers, they are all behind one product.

There are many problems with this. Competition is intense in today’s operating systems and
that does ddve a lot of innovation - losing that competition is not necessarily an efficiency
improvement unless something else starts to motivate the developers - for example they

MS-CC-MDL 000000032126
HIGHLY CONFIDENTIAL

could compete in enhancing the public domain OS, or in supplying new features as
middleware on top of it. Here again we run into the integration problem - competiting
enhancements in effect split the market, even if based on common source (the history of
UNIX is a classic example). Competing middleware does too.

Maybe a set of super smart programmers would write operating systems for the good of
humanity. Some undoubtedly would (Richard Stallman is an example), but its hard to have
confidence in this occurring at the necessary scale The Soviet Union ran the experiment for
70 years and had a rather unambiguous result. I was just in Russia, and I can attest 1o this.

So, CheapOS world is a nightmare. The system software industry is sucked dry,
undermining the foundations of computing. It surely is not an idyil~c vision of the future.
Since user~ vote on such actions with their purchases, I think that it is unlikely that we will
see it. Only some draconian force - such a misguided government - would put the industry in
this sad situation.

V~Jt~at about PdceyOS world where the OS costs 10X as much as it does today?

In the shod term it would be a windfall for software companies, but the shod run is not the
relevant topic. The current discussion is limited to the steady state after PriceyOS world
had been around a long time. I believe that you could create a stable situation where we
could spend 10X more money developing our products than we do today, in return for IOX
greater revenues (and the same margins). We would need to do this because our various
OS competitors would have access to those kind of revenues too, and over time we would
reach some equilibrium where we all spent like crazy developing software.

It may seem wildly unrealistic to say that we could scale up development even if revenues
supported it. How could we possibly manage teams 10X as big? Easy is the answer- just
look at history. In thje last decade we HAVE increased our development spending by more
than this amount, even if you look at a single product. Each step happened incrementally,
and we adjusted to it. If somebody had told us then that we’d scale up by IOX we would
never have believed it - but we did it all the same.

If we had grown in up in PriceyOS world, over time we would have done the same thing.
Indeed if you reject the notion of being able to spend IOX more on development, lhen you
must think that the industry will die soon, because in a few years we will be spending IOX
more than today (exponential growth is like that).

We wouldnl be tt~e only ones to adapt; various pads of society would have to change too.
Increasing development resources by IOX would put talent at a premium. W’nich means
salaries would dse, creating more incentive for CS grads. The industry would reach out to
international developers in India and elsewhere even more than today. Again, this will
happen in the near future - as China, Russia, India and other large countries get more
software work, and thus more incentive, it =s only a matter of time before there are IOX more
programmers on eadh than today.

Even in the US there would be increases. It might seem crazy to thinkthat there could be
IOX as many programmers, until you look at the statistics of how damn many lawyers there
are. It might take a while to reach a new equilibrium, but somethnig like PdceyOS world is
almost certainly possible.

This amazing increase in development resources would get spent lots of ways. Lots more
features. Lots better integration, testing and lots fewer bugs Lots more niche support for
features that do not make the pdodty cut. We might have teams of human code optimizers
tweaking assembly language. We might have whole concurrent teams turning releases
sooner because theywould develop in parallel, There would be many ways we could spend

MS-CC-MDL 000000032127
HIGHLY CONFIDENTIAL

a vastly larger development budget.

Actually, we have an existing example ofth~s. Intel has much higher profit margins than we
do on its CPUs, and takes a much larger chunk of the total cost of a PC than operating
systems do. Given their amazingly high revenue per PC, in a real sense Intet is living in
PriceyCPU wodd - a close cousin to PdceyOS world. And, as a matter of fact, Intel does
ALL of the things mentioned above. They do support for niche features (like MMX and other
examples). They do a lot more hand optimization of critical circuits than we do for critical
code. They do lots more simulation and testing. They have multiple implementation teams
for different chip families. We used to have two main thrusts with Win 9X and Win NT, but
increasingly we are moving to one, because we feel that we cannot afford huge parallel
efforts. Intel does however, and with Intel style revenues per PC we could, and in think in
the long run would, tend to support at least three parallel efforts of comparable complexity.
Just as Intel does.

You might say that this is because they are in the hardware business, not because they have
much higher revenue. Surely software is different. I thinkthis is backwards. Hardware can
be done with low margins - as many chip makers know all too wetl. In those cases you don’t
find Intel style spending. There are some obvious differences between hardware and
software, such as the capital requirements for building FABs. However, I think that in most
cases even these can be handled w~l~out breaking the basic analogy that a PdceyOS
company would be a lot like tntel,

tfyou reversed the revenue roles, and gave Intel the same revenue per PC and margins as
Microsoft, and Microsoft the fntel revenue and margins, life would go on. Intel would
produce fewer new chips, and Moore’s law might happen a bit slower. In compensation,
some of the development spending at Microsoft would go to size reduction and performance
enhancements.

PriceyOS world would have much better software than we have today, just as we have much
better software today than we had in the past. It seems pretty good, but there is a major flaw.
You can’t keep rais=ng the total cost of buying a PC without eventually effecting the market.
Demand elasticity is not infinite, and a wodd where the OS cost 100% of the hardware cost,
would in effect double the price of a PC, which would cut the potential market and rob the
whole process of some of the scale effects and leverage that is so powerful.

So, it would seem that the optimal p~ing for system software is some batance between
demand elasticity with respect to pdce on the part of users, which stdves to keep the cost
low, versus the benefits of greater development spend=rig. The optimal value is thus
somewhere between where we are today (where the system software cost is demonstrably
not high enough to impede user demand) and something a b~t more expensive. In this view,
PdceyOS wodd is suboptimal because a 1000% increase in the price of the OS would put a
damper on demand.

Or would it? We have been innundeted in the last couple years with studies of the Total
Cost of Ownership that claim that the actual cost to most users of PCs is vastly higher than
the cost of the hardware and so,rare combined by a large factor- say 2100% of the basic
hardware cost (i.e. $14K a year for three years for a PC that costs $2K).

You could increase the cost of the OS by 10X and it might not matter if the consequence is
that TCO was lowered a sufficient amount. Even a 10% reduction in TCO would let you fund
a 10X increase in lhe price of software and still give the end user a substantial discount
versus today. It entirely reasonable to postulate that if you increased the software
development budget by 10 TIMES that we could reduce TCO by 10%. Indeed, the NT5 plan
of record should reduce TCO by more than 10% for a much more modest increase in
development costs. Yet we aren’t planing anything like a 10X price increase for NT.

MS-CC-MDL 000000032128
HIGHLY CONFIDENTIAL

There are many flaws with the "]’CO studies, but nobody disagrees that owning and using a
computer does have hidden costs. So even if the numbers are too high, the principle holds
that the cost of system software (or other software for that matter) is a very small percentage
of TCO. As a consequence,small improvements in TCO could allow you to price software
much higher - and still give customers a BETTER deal than the get today, even if the
numbers are not what Gartner claims.

Above i argued that distributing source code to customers for them to hack for themselves
was inefficient, because the "free" software just incurred lots more end user costs. These
costs were large in aggregate, and furthermore are inefficient because distributed
development lacks scale leverage and can’t concentrate talent.

Just like TCO. The work that end users, system integrators and other parform as part of
their TCO chores is just as distributed and just as ineffecient as if they were all developing
the system. In fact, if you count TOO, then our CURRENT software pricing isn fact a
CheapOS scenario!

From that perspective, we would be much better off charging a lot more for sotlware, IF (and
only if) in return it could solve all the TCO hassles. Those hassles would be better managed,
and software which solves them could achiew vast scale leverage, rather than being the
domain of the PC guy down the hall.

So, =f anything recent experience suggests that the trend should be toward more expensive
software, not cheap software!

Of course, there are several objections to this. The first and biggesl is lhat users MIGHT
percieve TCO differently than retail cost. Suppose that there were two PCs in the local shop -
one costs $2K and has today’s level of hassles, the other costs $15K (with a lot going to
software annuity) over three years, but has radically lower TCO. Would people buy it? They
certainly should if they figure TCO costs, but it does not mean they would. Humans are
notorious about subject valuation - which is wl~y nuclear powerplants are much more scary to
people than driving to work - even though the commute is demonstrably more dangerous.

Even if in the long run it would be more efficient, the bootstrap period in which the perceptual
view would dominate would be hard. Big MIS organizations that track TCO might be the first
to switch, it might take a very long time for home users or other parts of the market to catch
up. One reason is that TCO average do not apply to many customers. It is much better for
them to buy a flaky machine if their pattern of use does not expose the flakyness, or does not
do so often enough that it is a problem.

More generally, there is an interesting phenomenon that ANY system sol~are pdcing model
tends lo get stuck in a rut. If we lived in a competitive CheapOS world, it would be hard to
raise prices to the current level. Similarly, it would be hard for us to raise prices today, even if
you could prove that the benefit (from TOO or other means) was wodh it to society Over a
long pedod of time it could be done, but only with a groat deal of effod. The world tends to
equilibrate around a certain level of soltware pdcing, and resist changes even if they are for
the better with respect to the economics of BOTH customers and vendors. Change is not
impossible, but it has to be done in a very clever way,

Bill’s famous open letter to hobbiests posed Ibis dilemma - saying that he’d love to have
people pay for sollware because then he could afford to hire some more programmers and
make lhe producl better. It’s time to admit thal it worked out pretty well!

However. today you could equatly well write the open letter saying that we wished people
would be willing to spend a lot more money on software so we could cure the TCO problems,

MS-CC-MDL 000000032129
HIGHLY CONFIDENTIAL

or promote better ease of use, or be able to take on new tasks and advanced features and
functionality. Even as far as we have come to date, the main theme of the letter is still valid
software has yet to bottom out in its potential. In the current climate t don’t advise posting
such a letter, but the amazing truth oftl~e matter is a world that invest substantially more in
software would probably be a lot better for everybody.

Nathan

MS-CC-MDL 000000032130
HIGHLY CONFIDENTIAL

