From: Chris Jones

Sent: Tuesday, July 20, 1999 12:47 PM

To: Bill Gates

Subject: FW: thoughts on (and questions on) the platform...

i thought this might be interesting for you given our conversations today. some stuff we are
thinking about for neptune. no code, just thinking, but we are going to get there.

— chiris

---—Original Message-----
From: Chris Jones
Sent: Friday, July 09, 1599 9:31 AM
To: Jon Thomason
Subject: thoughts on {(and questions on) the platform...

to set context, i've been thinking about how we move forward w/ neptune. one thing thati am
wondering about is our new client side platform.

first i talk about customers, then features of the platform that i think we need, then some views
on what we could do to build them. this is all braindump and i'm sure that you and others have
thought about most of this. i am wriling primarily to give you my perspective and views.

customers (or why client side code)

one quastion we have to answer is what is the opportunity/compelitive advantage to writing client
side code? our message must start with this — we have to be able to articulate the advantages of
writing client side code. these should be things that are either 200% befter on clienis or only
possible on clients. my list is (frighteningly) short, would be interested in seeing yours:

a) offline (or local) data. because intemet connections are intermittent, having offline or
replicated data is essential at least for the next 3-5 years, and probably longer. i would put all
existing win32 apps into this bucket -- ihey all want to work with replicated intemet data.

b} editing of anything. picture editing, document ediing, music editing -- these take up a lot of
cpu time and have the benefit that they require both local data and local processing. with the
continuing emergence of digita! media i think there will be an increased market for these types of
applications.

c) high performance graphics and interaclivity. games is certainly the biggest example of this,
muiti-media or consumer titles also fall into this category. again, increasing marketplace,
especially if we are successful with x-box or another windows-based game console.

d) rich, high fidelity display. cutside of the categories above, this is the weakest of all. ithink we
can only sell this as an advantage if we remove some of the problems with dient side code (see
below). maybe you could convince web-based solutions or applications to do this, but it would be
frosting and not core. that is not to say frosting is bad, but it is not sufficient to get them to bet.

a) speeach, nip, or other forms of input. i think we are ahead of our time here but this will be big
someday.

why pick the microsoft platform?

once we've convinced people that they should write client side code, the next question is why will
people choose ouwr platform? this is the second part of the message -- once you have articulated
the opportunity we have to talk about why windows is the way to go. here is my list of things that
we should deliver and provide, again we should get to one linst and agree:

a) zero-fnction deployment. a must, this is the number one blocker. has to be a no-braner for
users to gel the application. this must work for both "page-based” applications and also
traditional, win32 apps (like games).

Plaintiff's Exhibit
6607

Comes V, Microsoft

MS-CC-MDL 000000377291

HIGHLY CONFIDENTIAL

b} digitial rights management/protection. i think this is going 10 be huge, for copyright of software,
but also for pictures, music, efc. this will enabie a new type of content application that we haven't
seen before. also will enable piracy protection (tracking of who's using my software) and upsell.
c) automatic replication/caching of data. this again must be easy for traditional apps (like
winword) to use as well as new generation apps (like money).

d) service buill in. i think service includes settings roaming (word follows me around), automatic
update/hot fix (for the latest changes), connect to help/pss (on the web), upsell new versions or
add-in's (again on the web). ali new apps should come with www.theapp.com site that supporis,
roams, and provides service.

e) easy to use/help builtin. we can help isv's here, and this will be important. | am not sure what
our platform message is here, but this means web-based navigation, text and commands built in,
a hew user model for presenting information.

fy greatiools. we have to have atools story, this is key. whether we build the tools or visual
studio does or a 3rd party does, they must be available and sim ship.

g) "cool." we should not under-value this, our platform must be cool to folks, iike 3d was with
wing5.

830 what's this new app model ook like anyhow?
next step, what does this thing look like? here's a picture to get started...

part 1: app basics

i'll start with things that i think every app has, then talk specifically about "page-based” vs.
"window based" solutions. first, | assert that every new app has (a) a web site, and (b) a cookie.
the faliback is that the app "web site" is really just a cd-rom that is read only, but it should still
have a "cookie" that is uses to identify the user on the machine and store information about them.
why? four features:

1} depolyment/purchase. the web site is used first and foremost for deployment, update, and
"refresh” of the appiication. ithink all new apps are sold and distributed on the internet by default,
where the cd and retail are distant seconds. 50 to run winword i navigate to

hitp:/iwww. winword .com. enter my credit card, and off i go. the nice thing about the cookie is that
the winword folks can use it to frack how many machines and users are running their software,
and do some basic piracy enforcement. so each winword user gets a unique cockie when they
purchase, winword validates the cookie when connacted te the internet, and either shuts down or
informs the user If the cookie has "expired™ or if more than one person is using it. requires:

MS-CC-MDL 000000377292
HIGHLY CONFIDENTIAIT,

- zero deployment for apps. fusion team, has to span existing win32 apps as well as web-based
solutions. includes url's for naming everything, auto-cachefinstall of apps.

- ip protection. story on how to mitigate piracy, maybe using cookies.

- one click shopping. would be nice to have the credit card stuff bundled up s0 there was one
click shopping for these items.

- cookie api? some way for all types of apps to request and use a cookie, independent of the
browser.

2) app heallh/updates. secondly, the web site is used for incremental (on demand) updates, and
reporting gpf's. each app will want to run a "health service,” where they register their sile for gpf
reports, and then neptune posts the information o their site so they can track, monitor, and
dynamicaliy update their app. they also host additional help updates and troubleshoaoters for
common calls. requires:

- gpf reporting. way to register your app and the gpf's you are interested in.

3) settings roaming. third, the web site is used to roam settings. note that in the picture above i
assume that there is a place where my cookies are stored and synchronized, so from any
machine i can log in and replicate my cookies, then pass the cookies off to the "app site," which
then provides me with my settings (and caches/installs my app as necessary). requires:

- cookie roaming. api's for this plus service to support. probably want to have this with msn and
other services (aol, yahoo, etc).

- settings api's. way for apps to replicate their setlings locally. related to com+ stufi i'm sure.

4) new purchasefadd-on's/upgrades. lastly, but maybe most importantly, the app vendor now
has an ongoing relationship with the customer and can use that to promote updates, upgrades,
and add-on packages. no new requirements, except maybe:

- netification service, way to promote/provide messages to users.

so part 1 enables all types of applications, but mosily existing client side applications, to add a
service to their application, reduce support costs, generate new business, and reduce piracy.

part 2: data replication and sharing

the second part of our new app mode! has to include data replication. there are two types of
"data replicated” apps.

a) traditional publishing. think about moving from my documents to mydocuments.com. pictures,
music, video/movies, letters.

b) data-centric applications. have a database plus rich views on the data set. mail, money,
schedule -- all of these fal! into the same calegory.

we should have a terrific message for both of these isv's. personally, i think the first is more
important than the second, mainly because we will have more success. here are some things we
have to do;

1) mydocuments.com. every neptune pc should come configured with mydocuments.com, the
folder or place in the shell by default that an app can save information to and il will be published
to the web. we should automatically replicate this information out to the web and abstract away
the bandwidth.

2) fle => open web site. opening over hitp should be standard, http ur's shouk! ex|st
everywhere in the shell/apps and be the primary way apps interact with inforrnation. richer file
open with search across common sites/documents i've been to.

3) publish/manage collections. i think this is enhancements in the store/file system so that apps
can "save” collections of objects (from cornplete web pages to collections of picturesfimages) and
then the user deais with them as one "thing."

M5-CC~-MDL 000000377293
HIGHLY CONFIDENTIAL

4) lightweight database. this in my mind is a pri 2 or pri 3. we should enumerate the apps here
but i think we are aver estimating the number of people who will build applications like this. this s
one of the reasons | wonder why we picked mail as the stretch neptune app - how many isv's are
going to build & mail client?

part 3: integration across applications

third par -- integration across applications. think about this as the extension of registering as the
default mailer/scheduler/etc for the shell today. isv's want to be able to (a) promote their
application for the things it can provide, and (b) leverage other installed apptications for the things
they can provide. ithink about this as "service providers” for common types of information. we
may have to write "device drivers” for the common applications 1o make this work well. services
include:

1} buddy list/chat. any application should be able 10 "call’ cur service to start a chat or
collaborative game or collaborative viewing on a particular topic. e.g. doom should be able to say
*find player’ and it should launch whatever ihe buddy list service is, find the right player, and
return that player handle o the game. video chat, voice chat, and text chat should be a part of
this. we should write "drivers” for icq, aol, and other services 1o support this, and we should
enhance them.

2) mail. simple mapi, exists already, nuff said. again in addition to the api key is to write code
ourselves for the common mail providers (like aol, yahoo, etc) so that we provide enough
coverage for isv's 10 want to use our work.

3) calendar/schedulefaddress book. same idea as mail. i'm sure there are more of these.

4y new service provider we didn't think about. we should build this generically enough that it can
be extended by 3rd parties. think about this like the file exdensions database but for services.

as part of this, we have to ship "default" applications ourselves (these should be the canonical
shell apps) so we test/dogfood our experience.

part 4; ui integration and coolness

this is last on my list, but it is critical frosting that we have o have. this is what wraps it all
together. i lump the things we are doing in trident inlo this space, text fliow navigation, elc. i put
common controls here as well. there is value here (e.g. new user modei, sasier to use, simple
navigation) but the motivation will really be that isv's want to 100k like us. we should have a story
where it is easy for an existing win32 or web isv to get this new look.

closing thoughts
whew. s a long winded braindump. here are some additional things to consider...

points of light. this is what makes a neptune app cool. from above, here's my list:

a) supporis zero friction/zero cost deployment and incremenial updateffix

b) runs a service to support/upseli/deploy the application. (think application "cookie™

¢) supports mydocuments.com, and open/save from web locations. uses neptune file=>open 10
find/save files.

d) integrates with neptune services (inslant message, mail, calendar) where appropriate, or
provides a neptune service,

e) follows nepilune ui style guide. new page-based navigation.

microsoft‘fmsn business opportunities

we should think about running a store with msn where users get a subscription to a set of apps.
the msn team works with 3rd parties to launch the neptune service, where for $10/month you get
access to 5 or 10 applications, we pay back the isv's, get more msn membership, and provide a
new biz opportunity. another carrot.

MS-CC-MDL 000000377284

HIGHLY CONFIDENTIAL

thoughts?
i am not sure we need 1o change anything becausa | don't know what the app architecture is. i

am going to dig in and try to figure i out. interested in your thoughts on this -- specifically:
a} do you agree with customer list and customer problems? why or why not?

b) how do you think we will differentiate the microsoft platform?

¢) what are the features we should be building and are we staffed to do them?

d) what do we need to do to get in the feedback loop with isv's?

thx — chnis

MS-CC-MDL 000000377295
HIGHLY CONFIDENTIAL

