From: Bill Gates [fo=microsofl/ou=narthamerica/cn=Recipients/cn=1648] on behalf of Bill Gates
Sent: Monday, January 15, 2001 5:34 PM

To: Jim Allchin (Exchange); Steve Ballmer

Subject: FW: The Fifth Database Revolution

We need to get someone very technical to pull together our platform story.
Jim could do it but its probably best for him to delegate it to a small group with a leader.

The leader could be Eric Rudder or Rick Rashid or scmeone | am not thinking of. Some good work was done during the
NGWS days that needs to be carried through.

Eric tells me that currently there is some progress on this stuff but not a clear direction from management.

It is as a key advisor to this group that David’s input would become important. The key stuff is under Paul Flessner and
Yuval Neeman but neither of them 1s nght {o drive it directly. It does 1ouch on other pieces like WMI and Office
extensibility.

This is one of the bigger items in my memo and ts waiting there. | am not saying its easy work to do.
Lets pick how this is going to be driven.
I need io discuss that with both of you for a number of items in the memeo but this is perhaps the most urgent.

Here 1s the iatest on this from the memo:

Applications platform

Qur applications platform message is quite confused today. Pieces like CLR, WMI, MSMGQ, XML runtime, Biztalk, MTS,
1S, ASP+, Load Balancing, Message bus, SOAP, UDDI and Yukon are not consistent and reinforcing. Basic standards
like eventing, logging, and filtering have 1o be established. The disconnection of these products make our message when
trying to win back the developers who like JAVA and J2EE very difficult especially when we have the limitation of being
only on Windows and those technologies are supporied on many platforrs by many companies. Although we have
waited a long time for the shipment of V3 with the URT that doesn’t give us anywhere near a complete consistent
platform story.

The maost consistent platform in the industry is Oracle. They have used their database as the center of gravity to drive a
very strong story. We need to integrate more capabilities like email and directory and workflow and file system where
Oracle has done very little. In the basic intrastructure area though there are some lesssons to learn from them.

We have talked about many of these problems but nat pulled things together. MSMQ is a bit of an orphan. Qur
transaction strategy isn't getting any traction while BEA has established an $800M per year business around that
technology. We did a good job on MSMQ and MTS but they couldn't thrive on their own. Our decision to make Yukon the
center of gravity and to connecl Yukon to the URT should give us the clear starting point. \We may need to be able to
package Yukon so that it doesn't feel like a database if all you want is a Message bus. We may need to create some
subset implementations of things like Queuing for size and speed reasons. However the API set should be consistent.
We may need to be compatible with some of the J2EE apis.

Cur application platform for the server and the client need to be the same. The strength of our approach is that code
should be able to run Offline. This highlights again the importance of a Distributed Application Architecture where code
can determine whalt it needs to execute on a different server or down on the client. ASP+ has to be made reasonable as
a client side AP set which it is not today.

We have to take a hard look at our tools and consider how to be a better high end solution. We have to spend a lot of
money to make sure the openness of C# is well understood and thal it 1s accepted at a level that allows our innovations
to have traction.

Plaintiff's Exhibit
6917

Comes V. Microsoft

MS-CC-Bu 000000089456
HIGHLY CONFIDENTIAL

| think that between Paul, Yuval and Eric's group with leader from Rick Rashid we should be able to go through another
iteration on this (like we did with NGWS) and come up with some clear answers.

The strength of this platform and the innovation around it is the key element in preventing commodization by Linux, our
installed base and Network Appliance vendors. We are in the best position to define the distnbuted application maodel that
aliows work to be moved out into the Network. We don't have enough research our product group people pushing this
agenda but we have the best opportunity. This is what it takes to seize leadership in caching, load balancing and
protocols. | think between Management/Setup and a vision of how our ptatform is Distributed we give ourselves a chance
to lead in all the Leve! 7 networking pieces. | almost included this as a separate item but executing on these two technical
pieces will give us what we need except for packaging, marketing and sales force.

There is a major packaging question once we get architectural coherence. To what degree should we package or charge
for the rich so called middleware pieces separately from the rest of the platform? Are there advanced forms of some of
these pieces that cost extra? Most of the APl set we want supported in the base server with understandable advanced
services costing extra.

We are discussing with IBM a joint effort to agree on most of the Application server pieces so that companies have a
choice of our two implementations. Although this would be an unexpected parinership | see a lot of advanlages for bath
companies. | think they can help with parts of the architecture. The current view is that we do not share any code
between the companies.

We also need to drive Microsoft to use the new platform to prove it out and show it off. Our Services need 1o use these
architectures so that our tools make them easy to extend.

--—-0riginal Message-----

From: David Vaskevitch

Sent: Sunday, January 14, 2001 6.12 PM
To: Bill Gates

Cc: Jim Allchin; Steve Ballmer

Subject: The Fifth Database Revolution

A while ago | promised Bill that | would write down in some detail what has to happen next in database land. It's also
come up In conversation with Steve. So, here are two papers. There are also two papers dating back about two years
that supply some of the maore intricate underlying technical details. The second paper is more technical, more pointed,
and better written. The first paper is more motivational, kind of, and, because | switched to the second paper befcre
finishing the firsl one, the first one runs out of steam near the end.

The Ffth Database The Structure of
Revolution.... the Fifth Dat...

Having now sent these | have to admit | also feel pretty weird sending them. Weird and conflicted. On the one hand, |
feel pretty deaply that if we don't do what is described in these papers, and some of the others I've been writing, we will
either a) not achieve our long term goals (platform adaoption, business growth, developer wins, etc), or b) get into
relatively serious trouble (never catch up with Oracle, not have the platform the biggest apps are wriiten on, miss key
changes). All of that makes me want {o write these papers, want to see them acted on. Then there's the "on the other
hand"

On the other hand | am now totally disconnected from pretty much everything to do with our platform. These papers are
hard 10 write in a wide variety of ways: time consuming, energy draining, et¢c. And, being so disconnected from the
platform, it means that most of what gets written in papers like this is just not going to happen. True of storage. True for
distributed app support. True for things in general. So, I'm saying out loud, that I'm trying to figure cui whether to even
keep writing this stuff. Besides the fact that it might well not have much effect, chews up time, etc, it must be annaying
for the people aciually having to build this stuff, to have people off in other areas writing this kind of stuff down for them .

The next one | would have written was going to drill into the whote "distributed” and "application server’ mess. But, I'd
really appreciate feedback on whether it is good, bad, or indifferent, and why, to be writing in this vein . . .

2

MS-CC-Bu 000000089457
HIGHLY CONFIDENTIAL

MS-CC-Bu 000000089458
HIGHLY CONFIDENTIAL

The Fifth Database Revolution

Changing the Rules of the Game

Do to Oracle what they did to Cullinet in the
80°s. Make databases the storage for
applications of all kinds everywhere. Create the
center for the next generabon operating systein,

the database will have become central to the
operating system and the basic application
platform will be both a consequence and a driver
of this change The key thing is we have to

application platform. and for the
computing world in general. All

currently thinking about, a plan | « XML

which aims for more fundamental | ¢ Huee Memary

Fundamental Forces
of that and more follows for | ¢ Need for Sea Change
creating the fifth database | * Huge Disks
revolution. That means | * PC/Server Symmetry
developing a very clearly focused | ¢ Pictures and Sounds
plan for Yukon, a plan that is [* Mulhmedia Web
more ambitious that we are | ¢ Transachonal Internet

really be fixed on - have an incredibly
clear vision — of what it is we are
transforming the database into.

Today a database is a slightly
exotic indusiriat artifact at the central
of heavy-duty applications. Today
databases only store records —
basically - are only seen by
programmers — basically — and are not
particularly relevant to either most

innovation, and innovation at a more
fundamental level than we have ever done
before

Technically, do we aim for a fundamental
new data model, a fundamental new algebra, a
new strongly typed system that lies at the base of
all our storage? The altemative — which is plan
of record — 15 to keep the relational model,
essentially intact, and glue on side pieces to
handle XML shredding and retneval, memory
oniented caching, stream oriented files, and a
bunch of other stuff, none of which will lead to a
fundamental revalution.

This is the first of two papers: this one
deseribes the motivation of the revolution, the
other paper! described the technical features
required to make it happen.

applications or most users. The decision we get
to make — whether explicitly or unconsciously —
is whether we want to transform the very notion
of a database — or not — into something totally
mainstream

There is a set of fundamental
transformations to the computing world around
us that both enables and drives such a
redefinition of databases; T lay those out. Then
there is a mew, challenging and complete, model
for what the database can and must look like to
be the center of the new wotld. That is what we
need to sign up to build.

The new dalabase finally becomes whal
databases were always supposed to be: the place
where essentially all data can be stored Mare
imporiant, as databases were always supposed 1o

More, Far More, thana

We are going to transform the very

organization will just by default

Core Principles
DB 1 XML. to the lCore

2. Relational File System

3. XML-Relational Data Model
concept of what it means fo be a | 4.In Memory Data Base
“database” to the point where every | 5. Object Relational Mapping
application, every user, every | 6 Weorld Models

do, the new database not only
stores bt organizes and gives
meaning to all the data in it. 1t
is this “giving of meaning”, this
“providing a structured
framework” that truly
distinguishes the new world
databases from the file systems

assume they wamnt and need a database on every
machine. The fact that, by the time we do this,

1 “The Structure of the Fifth Database Revolution”

and amorphous stores that we
have today.

To sacceed the new world database cannot
be an accidental creation. For example, just
gluing XML and, perhaps a relational file

David Vaskevitch version of: Jamuary 13, 2001

MS-CC-Bu 000000089459
HIGHLY CONFIDENTIAL

THL FI1FTH DATABASE REVOLUTION

system. onto the database, totally begs the
question of what the new world data model
needs to be And, if we beg the hard questions,
all we will build is a morc complex engine —
databases are already complex enough — that no
one will want. And, worse 1t will not support
new classes of applications, because it won't
provide a sold architectural foundaton for
building them on.

So, there 1s our challenge: redefine the
databasc world. Sign up to the big enginccring
project. But most of commit to thinking through,
down to the foundations, what that new daizbase
world really looks like, so what we propose is a
new world order. Not a new world mess, or a
new world paichwork quill, bul truly a new
world order

The Need for a Sea Change

Why even bother frying to create a
revolution? Afier all it is hard work technically,
entails a fairly large degree of risk, and may
cause us to just look weird. Why not just get
back to basics, make our database faster and
Taster, add on new features on the same basic
base, and aim for clustering i the release after?
Isn’t that safer strategy?

Without a basic sea-change, and without us
leading the seachange, actually causing the sea-
change, we will never overtake Oracle. They
start with a technically impressive product that
they, too, keep improving. The product runs on
several platforms, including ours. Many of the
other platforms, as hardware environments, offer
more scalability than we do, and coupled with
the surromnding operating systems. the other
environments offer more manageability too. The
core Oracle database starts out ahead of ours in
several areas, including embedded Java, stream
file system, object relational, abstract data types,
queuing, parallelism, and more. As we add stuff,
so are they. [f we do pick a front, like clustering,
to focus on, it is hard to believe that they won’t
be able to get there just about as fast as us,
making any advantage we can target short lived
at best. And, all of this is before we start to think
about their overwhelming marketshare, their
customer relationshups, their perceived position

David Vaskevitch

PAGE 2

as market leader, and the fact that they tun on
our plaiform and the platforms we don't run on
offering customers the safe choice So, all of this
says that competing with Oracle on therr own
turf is a losing proposition; that they onty way to
win is to take the big risk and cause a revolution.

The world both nceds and is ready for a
revolution in data storage. If we don’t do it,
somebody else will, and then we will have yet
another first maver to catch up to. Worst of all,
if we don’t do it, it is quitc likely that, in a
slightly more incremental fashion than we
would, Oracle will be the one to do it first, and
then we might as well pack our bags and go
home. The question is: “why does the world so
much need a data storage revaluiion?”.,

Huge Disks

Start with huge amounts of very cheap
storage, on notebooks and desktops. as well as
servers. Being able to carry around 10-20GB’s
under the arm is routine today. What in the
world would an mdividual put inte a 20GB hard
drive? Not Office, not a life time of memos, not
a shelf full of books, not budgets or even charts
of accounts for even a pretty big business, not a
year’s worth of presentations — even all of those
put together don't amount to even 1 GB.
Beyond words and numbers, pictres and
sounds, make even the largest disk seem small,

Imagine the web withont pictures and
sounds. Try to picture a web of pages consisting
of only words and number. Beyond just images
and soundtracks, more and more, animation is
starting to be key too.

Where is the single place where I can slore
documents, records, transactions, sounds,
pictures, videos, web pages, links, tracking data
— everything? That place doesn’t exist, the need
for it to exist 1s one driver for the revolution. Be
clear, the need is a personal need, a workgroup
need, an MIS need, an ISV need, and a webfarm
need. All users, all operators, all application
developers will need a single, consistent, safe,
and secure place to store, find, update, and work
with all their data. Yes, this is the old “universal
database” dreamn, but guess what, the time has
finally come . . .

version of: Janpary 13, 2001

MS-CC-Bu 000000089460
HIGHLY CONFIDENTIAL

THE FIFTH DATABASE REVOLUTION

PC / Server Symmetry

For years we have talked about “the day™ when 1t
would make sense to have the same DB running
on the PC as runs on the server. That day 1s
here It is here from a need perspective, a
features perspective, and. at least as important a
hardware perspective,

At one level the necd for a serious, industriat
strength database on personal computers has
been both completely obvious and completely
preposterous I we could ever get there users
could finally have security, “safety”, robust
features, and key issues like replication, backup,
and so on would be vastly simplified. On the
other hand, three major obstacles have always
stood in the way: cost, applicability, and need

Until aboul two years ago, stuffing a real
database mto a notebook or desktop PC would
have been just too much of a burden. Even
today, though, with 96M, 128M or 192M, let
alone even bigger memorics, not to menticn
1GHz processors, and 10GR disks, mosi vsers
won’t even notice if SQLserver is (pre) instalied
on their machines So, from an affordability
perspective, the day has come. What aboul
applicability?

Imagime giving SQLserver as a birthday
present; what would any normal person do with
it? A database that only stores business records
15 of only limited use on most PC’s. Now, even
as a record hoider, if we ever built a version of
Outlook that really had a data model and was
built on a local SQLserver, every user in the
world would immediately have a use for the db.
Every CRM vendor - guaranteed. 100% - would
mmediately integrate with that version of
Ontlook, and suddenly tens of millions of sales
and support people would not only use, but
actually mildly stress their client databases.
And, modulo our willingness to get Outlook
there, such a prospect is now eminently practical.
So, even without a change to the definition of
databases, cheap, huge bardware, has brought the
data of the client db without our reach and within
customers expectations. And that is even with
today’s still limited applicability. Now suppose
that changed.

PAGE 3

Suppose the database could store files,
applications, songs, pholographs, contacls,
email, reminders, videos. web pages, links, and
more. Supposc the databasc brought with it
robust back, transactiomal integrity, and
configurable security, Most of all, suppose that
database came with a built in data model that
organized all those different kinds of
information. Now you can store photographs
without “naming” them, yet you can find them in
a way nobody can today. Now links are all part
of a database structure that understands
annotations, private webs, and my links versus
vour links. Now documents, trip teports, emails,
are amomatically associated with the trips.
meetings, tasks, and budgeled projects they
showld be connected to. Songs are automatically
classified by album, awthor, performer; you can
have many playlists, when vou hear a song on
the radio, yvour system knows how to find it and
link it in to this structure. Who wouldn’t want a
store that can do all that? That is a store that
everybody would want on every notebook,
desktop, and pocket PC. That 1s a soluticn to the
applicability problem. When we build that
database, that database will be one that would
make a greal birthday present — although the
present will likely be the computer on which it
arrives already installed So, we are coming up
on an “applicability watershed”; when we cross
it, everybody will want what we bhave built,
Which brings us to need.

Whether we build it or not, the need to
organize all that data at a personal level is there
Today. Finding documents was hard. Finding
emails is harder. But finding photographs is
almost impossible. And, songs are not a lot
easier. Think about it this way: the same world
in which high-schoolers have notebooks with
20GB hard disks, is that world in which those
school kids also have a 20GB sized data
management problem. Remember for a moment
that just ten years ago 20GB was a big corporate
database. Now it's a kid sized database. That's
a real need, multiplied by the many data types,
multiplied by the flow of information across the
Internet and into people’s homes, dorms and
offices. The hardware is there, the applicability
is easv to see, and, most of all, the need 1s here.

David Vaskevitch version of: January 13, 2001

MS-CC-Bu 0000000B9461
HIGHLY CONFIDENTIAL

THE FiFTH DATABASE REVOLUTION

Somebody will fill that need, and whoever does
1t first, will be the winner in (he next database
revolution

The point of this section is not just that PC
db’s are important. The point really is about
symmetry. The point 1s as much a server point
as it is a client point And, 1 the end, it is truly a
db revolution point

Why Clients Matter So Much

For the first time, database design has to be
driven as much by the desktop as by the server
It stll has to be driven by the server, and many
scalability, manageability, and distribution
requirements will be server unique. However,
for the first time, database design will be equally
-- however you define “equally” - driven by
requirements that emerge from the client and
user side of the equation. This is why the point
1s not “ubiquituous clients”, so much as “PC /
Setver Symmetry”. Why?

First, now that clients are so powerful, have
such big disks, and so much memory, they are
capable of rummung industnal strength software.
Second, as users amass large collections of
mformation, they will develop therr own set of
demanding roquircments. Third — and most
wmportant of all - the very data types that are
driving the next revolution — sounds, pictures,
XML records ~ are equally at home on the client
and on the server. And that will drive us to need
and build symmetrical databases.

In the past all the data, all the records
origmated m, stayed in, and were the property of
large organizations. That leads to server centric
dalabases. Now that we are tapping into all the
more personal data too, imto data that doesn’t
only originate 1n large orgs, our focus expands to
the whole world, axd the design of our db
changes along the way This change is so
counter-intuitive that it is hard to even know how
to think about it.

Factoring the Client In

There are two keys here: 1) keep the client in
mind all the tume, and 2) think about user
datatypes and operations all the time. This
affects every aspect of the database, and, if taken

PAGE 4

to heart. will drive a design that will last for a
long time. Why a long time? Because if we get
the organizatonal needs, as we always have, and
now get the individual and end uscr needs, that
really is pretty much the whole world. And,
that’s the central point; finally databases are
going to be relevant to the whole world.

Pictures and Sounds

What does it mean to really do a good job with
pictures and sounds? Of course it means storing
and retrieving streams, including very large
strcams, quickly and reliably New quality of
service considerations arise - delivering a sound
or video stream 1n a stuitering fashion 15 almost
as bad as not delivering it at all. But just doing a
great job with blobs is not enough Afier all
records could be stored as blobs, but then
ncbody would think we had done a good job.

Compression and storage formais need to be
part of our database work. For example fractal
technology allows pictures to be stored in a
lossless fashion while providing very interesting
interpolation characteristics when the pictures
ar¢ scaled up for printing. If scalable fonts —
which once was a big deal for the Microsoft
Corporation — was a big deal, then scalablc
pictures is ten times as big a deal. Compression
is a hot topic for sounds too. MP3 for example
does a pretty good job on the size front, but at a
real cost in sound quality. Even native CD
formats are, in some ways, not as good as old
LP’s, because the sampling rates and algorithms
are not up to what the human ear can hear.

Indexing and organization are just as
challenging as compression. For example, an
Isracli company has developed software that,
with modest training, can recognizes a few faces;
that means your computer can pick out pictures
according to which of your children, friends or
wives (1) are in them. Beyond indexmg, the
structure of collections — collections of songs,
pictures, classical pieces, art pieces — ought to be
an intrinsic part of the database itself.

Quality of service takes on a whole new
meaning when the storage sysiem is delivering
continuous sounds and videos; having
*Cliffhanger” pause is just not an option

David Vaskevitch version of: Jamuary 13, 2001

MS-CC-Bu 000000089462
HIGHLY CONFIDENTIAL

THE F1FTH DATABASE REVOLUTION PAGE 5

Supporting pictures and sounds is critically Are we doing it?
importani for individuals, famihes, and
organizations, but it takes on a whole new
dimension in the context of the Web. Then the
question becomes: do we want Yukon to be the
backing store only for non-Web applications, or
for Web applhications, too.

The Multimedia Web

The Web of the foture is defined by three
characteristics; 1) imtrinsically multi-media, 2)
very high concurrency with high peak user loads,
and 3) infrinsically transactional The point
about the multunedia web 1s that it is not just
about streams If the database is to be useful it
has to deal with the multimedia data in its native
format, decomposed into its element, so that web
servers can project personalized pages to users.

This all places a huge new demand on the
new type svstem al some poimt sies will be
dealing with millions of objects, cresting
ammated pages on the fly, and the question 1s
will we be there to support them.

The Transactional Web

If you take away updates, then building a read-
only system simplifies the job a lot. Many of the
featurcs called for here might still be requured,
but they might not be required in the context of a
database Tt is because we want to support sites
that creatc rich content on the [ly and supporl
serious transaction lpads that we need a database
at the core

Putting It All Together

The Revolution — which 15 what we need to
cause — comes from putting this all together.
This paper outlines a series of changes in the
computing environment which will create a huge
requirement for a new sophisticated data store of
some kind [suppose it could evolve from some
other direction than a database, but that means
we are missing our main opportunity.

The opportunity is to recognize first how big
the sea change is. Second to recognize how
much it is in our interest to change the rules of
the game anyway. And, then to do it.

David Vaskevitch version of. Jannary 13, 2001

MS-CC-Bu 000000089463
HIGHELY CONFIDENTIAL

The Structure of the Fifth Data Revolution
A Solid Foundation to Build On

The fifth data revoiution, in reality. advances a
radically new data model, algebra, and
theoretical foundation on which databases of the

type system that can deal with complex records
directly. In the chicken-egg sweepstakes. 1t 1s
the complex records that come first as a

future are built. This new foundation
is based on six fundamental
substructures, described 1n the box at
right. The key is to not stop with the
first two bullets, and 1n fact to realize
that the XML-Relational Data Modgt
and the “world models™ are really the
bottom most eclements on which

Core Principles
1. XML to the Core
2. Relational File System
3 XML-Relational Data Model
4, In Memory Data Base
5 Object Relational Mapping
6. World Models

fundamental need.

XML has undone 20 yecars
of relational orthodoxy in one
feel swoop. Since the early
80’s we have been ftramed,
indoctrinated, even
brainwashed to believe that
databases — both the business

everything else 18 built. On that note, [
qump immediately to describing the foundation
elements.

XML to the Core

XML erases the distinction between documents
and records, essentially blurring that distinction
away to the point where we have to consider
documents and rtecords as one smooth
contuum. It is this aspect of XML that most
forces us to re-examine the underlying data
model of the database, because, this aspect
means dealing with amorphous and loosely
structured data within the same framework that
previously only recognized data with completely
[ixed and repetitive structure,

XML also has two other key characteristics:
1} hietarchically oriented, and 2} language
mdependent. The second characteristic 1s easy to
underestimate — in many ways, it is XML that,
for the first ime, allows complex data structures
to be described, transmitted, and worked with in
a way that is not tied to VB, C, Java, SQL, or
any other language.

Because so much of the Imiernct’s — even
more the new economy’s — commercial content
will be sent around in XML form, it has already
become necessary for any serious database 10 be
able to work with XML records in a high
performance fashion. However, the implications
of XML run much deeper, and the real win is to
proceed from simple shredding and construction
of XML documents, to having an underlying

entity and the underlying
engine — should revolve around fully normalized
rows and tables. In thus overly sumplified world,
purchase orders cannot all be represented mn one
place, hierarchies are handled in a round about
way. and any real complexity 1 data structure is
banished forever. All of this has creaied a real
hunger at two levels

The database cognoscenti — most ISV's and
MIS shops — have learned to work around the
limitations of rows and tables. To be fair, fully
normalized representations have a lot of
advantages including very high degress of
concurrency and superb update consistency
behavior. On the other hand, when SAP, for
example, finally gave in and fully normalized
their database, it grew by a faclor of three and
slowed down by a factor of seven. Unforiunately
the alternative was storing the data in the
database in a form opaque to the underlying
engine (eg mot rows and tables) and therefore
giving up on querigs, reports, and all the other
advantages of the modem database. 8o, the
inner circle, which is huge in size, will also be
hugely relieved when they finally regan the
frecedom to cxpress complex data structures
directly, as they were able to in the Codasyl
days It is XML that they will have to thank for
regaimng their design freedom. The fact is,
though, that the win for all those who aren’t in
the inner circle is even larger.

Far too many people believe that relational
databases actually cannot even handle

David Vaskevitch version of: Fanuary 13, 2001

MS-CC-Bu 000000089464
HIGHLY CONFIDENTIAL

THE STRUCTURE OF THE FIFTH DATA REVOLUTION

hierarchies and other complex structures at all,
That is this is patently - and ridiculously — [alse
1s most demonstrated that literally even serious
commercial application built around a database,
Tevolves around hierarchies. and many of them:
reporting relationships, charts of accounts. bills
of matenials. and on and on. Yet, after twenty
years of arguing, and not really winning the
arguments. surcly the better part of valor, is to
simply add complex data structures, including
hierarchics, back into databases.

So, XML to the core, means building
databases that natively consume, emit and work
with XML. This means query processors that
can find XML documents, transaction engines
that allow sequences of changes to be completed
as a whole or not at all, sophisticated backup.
everything a database is about. Most of all
though, 1t means not just tacking XML on, but
having it permeate to the very cenier of (he
database That permeating has three basic
implications binary representation, document
storage, and a rich new type system.

Of course XML can, and has to be able to
be, represented in text form. However, the idea
that, as a consequence of moving to XML we
should start storing all records, natively, in texi
form, 1s ridiculons. XML is a self-description
format, and it can work equally well in a text-
only world, and in a binary-only world. If we
are to be serious abomt XML we need to
automate, in a fransparent fashion, all the
mappings from text to binary and back This of
course points back to the type system.

XML is about not just complex documents,
but highly variable, even amorphous documents.
Being XML to the core means a database which
smoothly handles the full conttnuum from
documents with no repeating structure, to
database collections in which the structure is
both fully known and completely repetitive
This means both having an XML cache, but even
more important, extending the database to handle
collections of documenis as well as collections
of records — this is the “relational file system”.

David Vaskevitch

Relational File System

The RFS starts with incredible BLOB support,
which allows atbitrary documents, pictures,
streams, to be stored in the database. BLOB
Support is mostly about plumbing — backup,
transactions, Quality of Service guaranlees (to
avold jerky music or videos), Just BLOB’s is
not cnough thongh.,

Win32FS compatibility is the second major
requirement and one worth laboring long and
hard over. There are two basic ways to got
there 1) leap back out to the file system itself,
and 2) implement the compatibiliy m the
database iself. I favor the second because once
the work is done, most other integration related
aspects will work so transparently, It is a lol of
work though, in terms of both programming and
testing.

In the process of implementing document /
stream support, we really need to think throngh
the kinds of streams people will be saving and
what ndexing, compression, backup, and
retrieval capabilities are required. For pictures,
ideally lossless compression, with fractal based
interpolation for scaling up of prints is both an
opportunity and a requirement. For sounds, the
whole area of compression and fidehty is wide
open for innovation. Indexing, too raises some
intcresting challenges, some cxamples are
described in the companion paper. The point is.
are we even serious about supporting pictures,
sounds, videos, and other documents, in a way
that will really take us a whole step — or two —
past the file system.

It is the handling of directories that really
makes it the “relational file system”. At the
stmplest level, it is absolutely, totally key that all
directories be nothing more nor less than
database tables. It is here though that life really
gets interesting, The simple way to handle
directories is 1o represent them in the database,
the catalog, and stop there. Even at this level
this implies an ability fo query against
combinations of document meta-data and
commercial data. However, given that we will
not ship for at least a year or two, stopping with
mere tables will be a sin. Qur metadata model

version of: January 13, 2001

MS-CC-Bu 000000089465
HIGHLY CONFIDENTIAL

PA

THE STRUCTURE OF THE FIFTH DAaTA REVOLUTION

needs to reflect the web world our users now live
m.

The RFS must model links — as first class
and queryable objects -- annotations, again
reallv through from a data model perspective,
private webs. and more. It is this thinking
through of the larger world that the relational file
systemt lives in that will really set it apart. Are
we doing this?

XML-Relational Data Model

If there 15 one core. defining feature of the fifth
data model revolution, this 1s it Just as IMS was
defined by hierarchies, Cullinet by graphs,
Oracle by rows and tables, ODI by obyect graphs
— 1if we cause a new revolution we will be
associated with a rich new data model that for
the first time. keeps the simplicity and power of
tables, while reaclung out accommodate the
complex data structures the world is so hungry
for.

Adding just five new features to the
underlying relational algebra, extends 1t to a new
algebra, which 15 provably complete enough to
handle arbitrary data structures and graphs:

1. GUID’s allow all records and
documents to have a umique id. At one
level we have already implemented this
in Sphinx; the trzck 1s to fimsh adding
all the new kunds of indexes that allow a
record to be found as quickly as
possible, given only its GUID. Are we
doing this?

2. Pointers start with GUID value ficlds,
but for efficiency require swizzling, link
fixup, and other optimizations to be
implemented. What we really need is a
complete theory, we are commitied to,
and implementing around, of “marks,
identifiers, bookmarks, and paths”
Pomnters, and pointer based structures
live in four worlds:

a. Database based pointers which
point only within the confines
of a siructured set of records.

b Mapped Struchures allow a set
of database records to
accurately represent the same
araph as represented across a

set of gbjects or in a memory
based set of data structures.

c. XML Pointers extend XML
past hicrarchics info networks
and graphs.

d. Links are also represented in
the meta data / ftable
environment of the
surrounding database This
means links have two
tepresentations.

3 Entity Valued Atiributes are also
often called hierarchically embedded

tables. They allow hierarchies and
other recursively cmbedded structures
to be represented directly in the
database. In theory it 15 possible to
represent EVA’s logically, physically,
or both. I believe both representations
are essential, but XMI, makes that
whole issue go away; 1t certainlv
requires a physical representation

4. Abstract Data Types (optional). Years
ago everybody thought that ADT’s were
the center of rich data type support in
database. It turns out though that most
developers only need a small number of
atomic level extra data types, places are
at the head of any list. So, while for
completencss, at some point we will
want to implement ADT’s, if we defer it
by one or two releases, that should not
be an isswe given the richness
introduced the rest of the type system.

Implementing the XML-Relational type
system fully is a big job. It is, however the
foundation for representing rich data structures,
once and for all, and by being the first to focus
on really extending the type system we get a
variety of advantages including performance,
flexibility and thought leadership.

Implementing the type system means a new
storage manager, a new (ueEry Syntax {(or more
than one?), substantial improvements to the
query processor (tramsitive closure to begin
with); it touches a great deal of the core of the
database. It really 1s doing to Oracle what they
{and IBM) did to Cullinet in the early 80°s Are
we doing it? Soon? Seriously. Completely?

PA

David Vaskevitch version of: January 13, 2001

MS-CC-Bu 000000089466
HIGHLY CONFIDENTIAL

TIIE STRUCIURE OF THE FIFTH DarAa REVOLUTION

In Memory Database

Arc we serious about XML, the XMIL.-relational
model. and the new type system? If so, then we
better be damn serious about imdb. Rich data
structures, all pointing to each other, call out for
1 memorv representation. And, as memory gets
essenbialty free, as mactunes have unbelievable
amounts of memory it will become essentially
Just incompetent to not implement imdb behavior
and features. Al of a sudden most of the
database can be in memory most of the time
Why not be able to access all the memory-
resident data directly, without intervening api’s,
at least for reads? A write barner is required for
updates to cnsute security and (ransactional
semantics, but that too can be made transparent

Once upon a time, before memory and
processors became quite what they are today, the
way to do an imdb was as a separate engine; a lot
of work and a lot of complexity achieving
synchromzation. However, suppose we start
with the assumption that there 1s a SQLserver in
every node of a network! — every server, every
notebook, every desktop.

Each SQLserver has a cache, a buffer
manager — generalize it i three ways. First have
the cache support 65 bit addressing and very
large caches; this is a requuement for
performance anyway. Second provide a
mechanism so that “external” applications can
access Lhe data in the cache directly, natively,
with no api’s. In an ideal world this would all
happen with and through the CLR / URT, tut we
should not link the two things because we can’t
wait too long to get this done. Finally think
through a varety of synchronization
mechamsms, based around souped up
replication, for keeping many caches in synch,

The first benefit of this strategy is that, by
definition, both applications and the QP operate
against the one and same imdb. Second,
mtegrity of local updates is automatically
guaranteed because the local SQLserver (there
always is one, remember) has a transaction log.
backing store, etc. Finally, piggybacking on

L' At Jeast for me, onginal credit for this idea goes to
Dave Lomct

replication, even is significant new modes are
required, represents a luge synergy.

IMDRB, as we look out two years, is more
than an optional feature. It is a key performance
optimization, which we can’t afford not to have,
But, most of all, it 1s the engine featurc that
makes the rich data type system really fully
useable

Object Relational Mapping

For all of our talk about disconnected datasets —
certainly a valuable feature — talk to GPSI or to
our own Pace developers, brings out a singlc and
immediate truth; they work with the database
pretty directly, and one way or another, use it
through theirr own data structures. As the
finishing touch to the XML-relational type
revolution, we meed to implement rich object
relational mapping between CLS / URT objects
and structures and the underlving “extended
tabular” representation that will appear in the
database.

Even in the world of the XNL-relational
model, databases will still consist largely of
collections of records with repeating structure
In our new world the repeating structurcs can be
far more complex; for example cntirc orders can
be represented in a single record Normalization
will still be common, but now it will be a design
decision rather than a limitation imposed by the
underlying engine. However, even in that new
world, there will be two fundamental
representations of data, both of which will
generally exist in the same application and
often the same computer: collections of
records, and graphs of objects. The point of the
mapping system is to allow both representations
to exist without the programmer having to write
all the mapping code.

The mapping system 1s the first and most
obvious place where the CLS /URT can really
come together in a big way that supports all our
languages. Are we downg this?

World Models

For all of its vaunted ability to otganize data, a
database doesn’t really do diddley-squat to
organize data for us. It’s all left to the

PA

David Vaskevitch version of: January 13, 2001

MS-CC-Bu 000000089467
HIGHLY CONFIDENTIAL

THE STRUCTURE OF THE FIFTH DATA REVOLUTION

application programmer. So, for example. even
today, our hard disks are a mess with dozens of
three letter file extensions thai nobody knows
Our wiilingness to implement world models gets
1o the core, the essence, of whether SQLserver
stays “just a database™ or becomes more of the
apphcation platform Essentially, start by
asking: do we really want most people to store
all their data, all their information in our
database? If the answer is ves, we better provide
more than slightly better backup.

The completion of the five elements already
mtroduced here s a meta model that describes
the structure and relationships of the most core
data that goes on every disk, the most core data
that is central to all applications. This means
two basic models: social and operating
environment.

The social model includes basic concepis
aboul people, addresses, places, tmes, and
events If we are implementing a new version of
Outlook, not to mention a
CRM system on s, then we should have our
heads exammed. Equally though, the social
model, the work required to develop the social
model, is much of the work required to “migrate”
Exchange and AD to SQLserver in a way that
makes sense.

Be clear: if we simply port AD and
Exchange to SQLserver withouwt radically
rethinking their data models — hard work indeed
—we will kili AD, kill Exchange, kill S8QLserver
and subtract instead of adding advantage to
customers. There is a pony under there, but the
cost really is a rethanking of the data model
which in turn will lead to replacing quite a lot of
code.

The operating environment model finally
allows us to really orgamze all the documents on
our disk Thousands of photographs, hundreds
of songs, thousands of mail messages, hundreds
of applications componenis? The operating
environment model, with its built in notion of
“collections” provides default order to all this
chaos.

The operating environment model goes on to
define rich notions of links, private webs,
annctations. discussions, discussion threads, All
of thus should be an intrinsic part of storage; now

we will make it so. But, again, the question
coines up. are we doing this?

Becoming An Application
Platform

The challenge we face is finally make databases
truly relevant to evervbody and every
application. This means transforming, morphing
the database from a technical engine focused on
transactional and commercial applications, to a
far more gencral engine that, among others
things, can be at the center of a next generation
opcrating systcm. More to the point, it means
setting out to have the database really play a
Targer role in organizing mformaton of alt kinds
and in all situations.

It’s our decision. Do we want to create the
next revolution, fundamentally change the
definttion of the term database? So, others can
start kecping up with us? Or do we want 1o stick
to improving databases as we afl know them
loday, and contirue slowly catching up with
everybody else?

One thing is for sure, without the rich type
system, and powerful extensions described here,
It just will not be possible to have the database
become the place where all data is stored. We
can fry. but without the right underlying
fundamentals, all that will happen is that we will
become discouraged. And, since the
fandamentals are so exciting, the answer is; let’s
just do them,

Are we doing this?

P A

David Vaskevitch version of. January 13, 2001

MS-CC-Bu 000000089468
HIGHLY CONFIDENTIAL

