When to Combine ActiveX and
Java

Both ActiveX and Java are viable technologies. Both can be used to create Internet applets for
dynamic World Wide Web pages. Both produce code that can be located in centrally stored Web pages,
offering centralized control reminiscent of the mainframe model. And both support object oriented
programming iechniques that produce re-usable code, potentially reducing the speed and cost of software
development.

Micrasoft will support both ActiveX and Java on future platforms. giving developers the option to
develop solutions exclusively with either technology, or arrive at some combination of the two.

The goal of this article is to help IS managers identify the decision points for choosing one
technology over the other, and for identifying those siations where it may be desirable or necessary to
combine the two.

The anticle is divided into three sections:

« Developing with ActiveX

* Peveloping with Java

» When 1o consider combining Auive){. and Java

It's important to note that both of these technologies are new and evolving rapidly. While the
recommendations made below are valid today, the direction of either technology could radically change
within the next six months as new technology and tools are released.

L Developing with ActiveX

ActiveX springs from Microsoft’s traditional Windows development platform. ActiveX code is
developed using a Windows-based Integrated Development Environment (IDE}—such as Microsoft Visual
C++ and Borland C++—and uses Microsaft’s Component Cbject Model (COM) 10 describes how running
program componenis communicate with each other.

ActiveX brings three key benefits to developers:

Relatively mature developmeru environmeni. Developers can leverape their experience writing 32-
it OCX controls and Win32 applications 1o writing ActiveX controls. Developers also bave a wide variety
of sophisticated development environments to choose from, such as Microsoft’s Visual C++ and Borland's
Delphi.

Abeliyy to integrate with existing Windows componeais. AcliveX components can access any coM
interfaces buill into existing Windows applications and OCX controls. For example, an ActiveX control
can integrate with Microsoft Office applications through Object Linking and Embedding (OLE) COM
interfaces.

Full access (o underlying operating sysien scrvices. Since each ActiveX component must be
rewritten for each target operating system platform, an ActiveX component can use that piatform’s specific
API's 10 access all of the clicnt machine's functions and services. For example, an ActiveX multimedia
control developed for thie 32-bit Windows platform could access DirectX APls for high speed graphics and
sound.

ActiveX also has four weaknesses that developers must overcome or accepl:

Platform dependent code. An ActiveX component only functions on the particular operating
system platform for which it was created, ActiveX compels developers 1o author, test, and matntain
separate vessions of an ActiveX control for each target platform. This requirement makes ActiveX an

ENOnline doc’s\BradSNTXRespansivelactivex jova misin[a.dummm .
S/ 2897224706 « 10:18 AMIZot I LA » page 1

TXAG 0015734
CONFIDENTIAL

Plaintiff's Exhibit

7388

Comes V. Microsoft

MS-CCPMDL Q00000295487
CONFIDENTIAL

expensive choice for controls on the WWW., For example, an ActiveX control vendor who targets
Windows NT platforms must still create, test, and maintain seperate executables for the versions of NT that
run on AB6, Alpha, PowerPC, and MIPS processors. {This isn't correct, You can write ActiveX controls in
Java which are sinale, cross platform binaries.)

Incomplete platform avaitability. ActiveX is currently available only on Windows 95 and x86
Windows NT. RISC NT and Macintosh versions are expected within the next six to nine months, but

availability for other platforms is unceriain.[We have anoounced and have working versions of ActiveX

support on Uinix as well. In fact. COM/Active X support will be available on Solaris in the fumare.]

Inability to prevent Web page applets from causing harm. Once downloaded onto a client. an
ActiveX contro! can conceivably wreak havoc on the client system and the corporate network, While
Microsoft’s trust security model verifies the source of an ActiveX executable before running it (see our
June 996 issue, * Windows Trust Verification Service,” page 1), it does not prevent the control from
doing anything harmful, such as accessing private files or installing a virus.[The fact is that the ActiveX
control authentication actually verifies the source of software more sure]y than shrink wrapped software in
a store. The two security approaches are meant to sojve different problems. There will always be a need for
real, fully enabled/trusted software, and the control security model aliows this. The sandbox model
addresses the need for an environment where anyone can contribute software to the world which is limited
in scope due to safety constraints, but still worthwhile.]

Weak client sysiem maintenance. In Microsoft's current ActiveX implememtation, a control may
download a supporting Dynamic Link Library (DLL), automatically cverwriting a previous version. This
uncontrolled substitution could cause the disruption of an application that relied on the previous DLL
version. Also, downloaded controls can accumulate on the client, taking up significant space in the
machine’s hard disk and system registry. (Ed Note: This is probably a shott term weakness although
Microsoft hasn't reteased specific plans for automated removat of unused controls.) [This isn't true, The
versioning model which we’ve even enhanced Java with {since there isn’t one), defines rules that allow

upgrading of controls while preventing replacement of incompatible versions. This is actually one of the

very cool strengths of ActiveX. The second weakness is true and is being addressed as you mentioned]

Vhen 10 develop with ActiveX and COM. The wide availability of Windows-based development
tools, the ability to leverage existing Windows programming expertise, and the capacity to interact with
existing code via COM makes ActiveX best suited for Windows-based client development. ActiveX
development works best in circumstances where the target client platforms are exclusively Windows 95
and Windows NT.

II. Developing with Java

Java code is developed through the combined use of the Java programming language, 1DE for
Java, and a fava Virtual Machine (JVM). The JVM must be implemented on each target platform that will
receive the Java code (see “ A Java Tutorial,” page XX).

Java brings four benefits to developers:.

Security and robusiness. Through byle-code verification and a “ sandbox™ architecture, Java
prevents applets from performing any mischief on the client or corporate network. [Actually. Java does not
at all address denial of service attacks as noted by Princeton (creating too many threads, using too much
memory, etc). In fact. it is not difficult to write a Java applet that makes your machine unusable or crash in
any of todays Java environments. What Java does address very well {in versions with solid security
support) is the possibility of applets destroving or sccessing data outside of the sandbox as well 85
installing viruses on the local machine. Since we've also added signing and security support, Java in our
model supports signed/trusted applets. class library versioning. and extended the capabilities of trusted Java
applets.

Platform independence. Java's cross-platform byte code and abstraction of underlying system
services such as praphics and threads allows the saine Java executable to run on many different operating

EnOnline doc's\BradSi TXResponsivelactives: Java misinfo.doc BRSSUES QL svadelotbic X2 4 dlog »
S/28/9722495 « 10:18 AM12.43 PM « page 2
TXAG 0015735

CONFIDENTIAL

MS-CCPMDL 000000295488
CONFIDENTIAL

system/CPU platforms [This is not a point of difference because ActiveX and Java are not mutually
exclusive. To be accurate here, it is true that Java is, by definition, cross platform, but with controls, that is
a function of the implementation language. Java and VB contrals are both cross platform.}

Well suited for large scale development projects. Java's object orientation encourages developers
to divide code into pieces which can be re-used in other programs. Also, Java's automatic garbage
collection frees developers from having to explicitly release resources such as memory and window
handles, decreasing program complexity and increasing program reliability.[Also very well suited to
writing ActiveX controls.}

Support Jor centralized soffware distribution. Java applets are downloaded each time they are
needed, in contrast to ActiveX controls which become permanently installed on the client when
downloaded. This allows corporations to centralize software in a fashion seminiscent of the mainframe
maodel and thereby minimize client support costs.[Using the ActiveX downioad mode] enhancements, this
promise becomes a reality. Downloading every time something is used is redundant and slow. There's now
2 whole company base on frying to do what ActiveX download support provides for Java without the
versioning and authentication. If you look more closely, the ActiveX model actually provides vastly more
powerful centrahized maintenance.]

Java has four weaknesses that developers must overcome o7 accept:

Stow runtime. Since Java Byte-code must be interpreted by the runiime environment, a Java applet
can run an order of magnitude slower than an ActiveX control. This drawback may be mitigated or
removed entirely by JIT compilers promised in the future.[This problem is pretty much removed as soon as
we RTM next week. Of course the runtime itself will always have to be loaded which is more overhead
during instaritiation and more of a memory hit. That's what you pay for cross platfonm.]

Limited set of available sysiem services. The curvent set of Java APIs do not abstract all the system
services a programmer might need. For example, video recording and playback services are not currently
available through the Java API. To gain access to such services, a developer must create a platform
dependent section of code that interfaces directly with the underlying operating system. Such a solution
sacrifices Java’s platform independence for the sake of increased program funct:onatity, (Sun is currently
extending the sysiem services supported by the Java AP], including Multimedia, data base access, and
commerce AP1s)[Many of these APIs will need more security (signing and auhentication) than Java
currently provides in order 1o be truly useful.]

Immature Development Emvironments. Most development environments for Java are still in Beta.
The dearth of sophisticaied development 1ools limits the complexity that can be built into Java applications.

Platform inconsistencies. The Java Virtual Machine may be inconsistent from platform to
platform. For example, different vendors’ versions of the JVM can vary in how they implement the
creation of a security sandbox. This variance can cause program failures when two or more Java Applets
must interact. Inconsistency between runtime environmenis is a pivotal issue for Java's success since it
threatens platform independence.

When to develop with Java. Java works best when creating dynamic content for the Internet and
for heterogeneous corporate intranews. This is an area where signing opens up a new world. In a corporate
intranet, MIS departments can use a corporate signature to enable cool. intemal or trusted Java
applets/applications w0 merge local databases with the corporate database, access and update files on
employee's svstems. and other maintenance tasks.} Java is already is supporned across a variety of client
operating systems and CPU architectures by most vendors® browsers {either in final or beta form). Also,
Java’s security architecture makes it safe for corporate IS 1o allow users to cruise Web sites containing fava
applets.

Java is also well suited for creating new corporate applications which don’t need to be tightly
integrated with existing Windows programs. {Without signing, there is currently a problem in deploying
applications which maintain user's systems in a corporate environment withous completely restricting
access 1o the external mtermet. This is a serious flaw which we believe we have addressed. JFor example,

E:\Online doc's\BradSN TXResponsivelactivex Java misinfo. docDAMSSEES0GILE U ok ActivaX2idac +

S/28/97224296 « 10:18 AMI2:43-PAT « pape 3
TXAG 0015736

CONFIDENTTIAL

MS-CCPMDL 000000295489
CONFIDENTIAL

JTava would be the development environment of choice to build a real estate property listing viewer for
agents in the field who might access that viewer using Windows, Macintosh, or a variety of other types of
¢hent machines.

ll. When to Consider Combining ActiveX and Java

Combining ActiveX and Java requires development in both 2 traditional Windows development
environment and & Java IDE. It also requires that the 1arget client's operating system and JVM are COM-
compliant.

Combining ActiveX and Java brings one main benefit to developers:

Adds Java to Windows developmeni togls. Organizations with Yarge investments in Windows can
use Java to develop new applications and integrate those applications with Windows clients.

Combining ActiveX and Java has three weaknesses that developers must overcome or accept:

May introduce platform dependencies. In most cases solutions that combine ActiveX and Java will
inherit ActiveX’s platform dependency (and forfeit Java's cross-platform advantage).

May iniroduce security & robusiness concerns. Combining the two technologies introduces
ActiveX's security & robustness considerations that wouldn’t be present when developing exclusively with
Java.[We have only enhanced Java security with our support]

Vendor dependent. Solutions that rely on the integration of these two complex technologies rely
heavily on Micresoft and others vendors to provide the technological infrastruciure that makes this
intzgration work. Much of this integration rechnology is stilt nascent; Microsoft, for one vendor, is still
working on 2 number of critical tachnica) details.{ This is somewhat hard to understand.]

When to combine ActiveX and Java. As a general rule[.] developers prefer to keep solutions
within the framework of a single technologyldo you meap thar developers don't mix languapes???],
combining multiple technologies only when absolutely necessary. Developers should consider combining
these tw o technologies when they must integrate existing Windows-based code with new Java authored
components/solutions,

There are five specific situations where combining ActiveX and Java iechnologies might be
desirable or necessary. Developers should consider combining the two technologies when:

» Authoring a Java Applet to run inside a COM-based browser

» Creating a Java Application 1o be linked or embedded within an OLE container

« Using an existing ActiveX centrol from within a Java Application

« Constructing a Java Application capable of launching a Windows program

« Creating Java middleware that performs services on behalf of 2 Windows front-end

[Integrating mixed language or C++ development with Java]

[Accessing new ActiveX technologies such as DirectX (sound, 2D. 3D, MM}}

Each of these fise-situations are outlined below, including the consequences to development, code
portability, and security & robustness that result from mixing the two technologies.

A. Authoring a Java Applet to run inside a COM-based browser

Microsoft makes it possible for any standard Java applet to run inside a COM-based browser {or
other application) such as Internet Explorer 3.0. Microsoft’s Java Virtual Machine antomatically maps the
Java to COM without any special modification 10 either the Java applet or browser. The automated
mapping allows COM-based programs to launch Java appleis, and also allows Java applets to be controlled
by ActiveX scripting engines such as Visual Basie Script.

E:\Onfine doc's\BradSi\TXResponsivelactivex juva misinfo.dori S SULOQSI AL 20 &t SHMUN2E 06 +
3289722406 + 10:18 AMI24A-EAL » pape 4
TXAG 0015737

CONFIDENTIAL

MS-CCPMDL Q00000295490
CONFIDENTIAL

Microsoft’s JVM exposes a Java applet’s public methods through OLE Automation, making the
Java applet appear to the browser as a COM object, and fooling the Java applet into believing it is being
called by another Java program. (Ed. Nofe: See scenario # | in appendix for the technical details of how this

works.)

1. Consequences
Developmeni implications. A developer does not need to alter the either the Java applet or the
COM-based browser for the applet to run.

Impact on portability. Since the Java applet is still completely in Java, it will still run an any
OSICPU with 2 Java browset.[It seems like 2 worthwile point to mention in the cross-platform, ActiveX

comparison.]

Jmpart on security & robusiness. Since the Java applet runs entirely in the J¥M (which verifies
the byte code and restricts file access), it maintains Java’s inherent security and robustness.

B. Creating a Java Application to be linked or embedded within

an OLE container

Developers can use Java to create an OLE server——an application that can be linked or embedded
into an OLE container (such as Microsoft Word). [Actually, we plan to have to docob] support in the SDK
{available 1n about 2 months). currently, we suppon ActiveX controls which are slimmer and work in
containers such as IE or VB 5.0.] For example, a charting application authored in Java can be used 10
embed a chart within a Word document. When the user opens this document in Word and selects the chart
for modification, the Java charting application would take control of the menu, toolbar, mouse, and
keybeard,

1. Consequences
Development implications The Java programmer must augment the Java saurce code to
implement COM-based interfaces required for Object Linking and Embedding. (E4 Nofe: See scenario #2
in appendix for complete technical details of how this works.}[This is not true. Qur development tools do
not require You 1o aurment Java source code.} '

fmpact on poriabiluy. A Java application linked or embedded within an OLE container still
maintains Java’s inherem portability. While the Java application contains code that implements the Object
Linking and Embedding imerfaces, this code will not affect how the applet runs on platforms which don™t
support COM—the code wit! simply be ignored.fYou may want 1o mention the fact that COM cennection
is done through atiributes. not code. This means that a tlass implemented in Java can replace an existing
¢lass which was implemented in COM with enhanced features on 8 COM supporting platform.]

Impact on security & robustness. While running, the Java application possesses all of Java’s
security and robustress. However, communication berween the Java application and the OLE container
does not share Java’s security and robustness. Improper communications between the container and Java
zpplication passed via OLE interfaces could conceivably cause either or both components to crash.[Poorly
written pure Java applets can crash just as easily.]

C. Using an ActiveX control from within a Java Application

Java developers can leverage existing code packaged as ActiveX controls. The ActiveX control
may take the form of a visual element, such as an spread-sheet control, or a COM-based system service
such as MAPI. For example, a point-of-sale application written in Java can use an ActiveX control that
displays a chart of sales by region.

1. Consegquences
Development implications. A Java developer must incorporate a series of instructions explicitly
designed to call the ActiveX control from within 2 Java application. Only ActiveX controls recently

E:\Online doc's\BradSATA Responsivelaciiver Java misinfo. docDUSSUHESIOS I avak detivaX2d dac «
5287772406 « 10:18 AMI2:43 PAY » page §
TXAG 0015738

CONFIDENTIAL

MS-CCPMDL 000000295491
CONFIDENTIAL

authored using C++ and Microsofi’s ActiveX Template Library (ATL) can be called. Version 1.0 of
Microsoft’s JVM does not ellew developers to cafl legacy OCXs from within Java code. [This is not true,
We just don’t provide the framewoks which make it easy to host lepacy OCXs from within Java applets,

but you have access to all COM objects, including OCXs even in the current version. This framework
could be built by developers {with a reasonable amount of java code) because the basic access is there, but
we will provide a framework in our SDK.]

Impact ont portability. The Java application that incorporates an ActiveX control can no longer run
on any Java platform. 1ts use is restricted 1o those platforms that suppart ActiveX controls, include a JVM
that integrates ActiveX controls. A version of the required ActiveX control must be installed on the
clicnt.[This is not true cither. The specific class or classes which were implemented in COM would need to
be available as a Java ¢lass on non-COM platforms. If this was done, the whole application could run just

fine.]

Impact on security & robustness. Java's security is breached and its robustness is disabled
whenever an ActiveX control is accessed, [This is absolutely false. Unsigned, untrusted Java applets do not
have direct access 1o any COM classes which are not specifically marked as safe for access by untrusted
applets. We have actually extended COM security WRT Java. I do not remember being asked about this
issues, and I'm beginning to wonder by whom this information was conveyed. Since this is factually
incorrect, I'm concemed that someone in our company may need to have this explained to them.] Trusted
ActiveX control operations are not testricted by Java’s “sandbox.” An ActiveX control has full access to
the user's privileges. A malicious or errant ActiveX control can wreak irreparable harm on a system or
nemwork.

D. Constructing a Java Application capable of launching a

Windows program
When running on Windows clients, a Java application can launch any Windows program. For
example, a browser authored in Java could launch Microsoft Word whenever it encounters a Ward file on

the Web.[Only signedftrusted applets could do such a thing since this level of access would breach our

security model if done from an untrusted source.}

1. Consequences
Development implications. To launch a Windows program, the Java developer must incorporate
special instructions that implement Object Linking and Embedding COM-based interfaces. (£4 Note: See
scenario #3 in appendix for complete technical details of how this works.)

Impact on secucibndirabusiagss{cross platform]. The Java program can no longer run on any
Java plarform. Its use is restricied 10 those platforms that support COM, include a JVM that integrates
COM. and a have browser (for Java Applets) that uses this JVM. A version of the required Windows
pragram must be installed on the client.

Inipact on securine & robusiness. [Factually incorrect. and damaging to the understanding of our
1eal security model If vou really believed we hadn’t thought of such a paping hale, why not just ask?]The
ability for a Java program 1o launch a Windows program through a COM interface breaches Java security,
While Java's sandbox prevents a Java applet from circumventing security restrictions, an installed
Windows application has no such reswrictions. A malicious developer could create a Java applet that directs
a Windows application to violate these security restrictions on the applet’s behalf. For cxample, a Java
applet could download a malicious Word macro file and launch Word with instructions to execute the
macro. (Ed Nore: Tor this reason, Intemet Explorer 3.0 allows users the option to prevent Java applets
from accessing ActiveX.[Not true. Since we do not expose any new security holes in Java, and, in fact,
have been 1old by Princeton security experts that we are more secure than other JVM implementations, we
have only provided the option to disable Java if desired. While we believe that our implementation is so
secure that this wouldn't be necessary. publicity of other Java VM’s security holes has caused 1S managzers

to want this.])

EAQuliag doc 5\BradSN T Respensive\gctivex fava misinfo. docDUSSLES 96U S ava S dctiveX24.dos »
S28/97L248E « 10:18 AMILAI LM » page §

TXAG 0015739
CONFIDENTIAL

MS-CCPMDL 000000295482

CONFIDENTIAL

E. Creating Java middleware that performs services on behalf of

a Windows front-end
Java developers can create sophisticated middleware that provides Windows-based front-end
programs access to back-end services. For example, systems developers at 2 health care provider could use
Java’s abject oriented development environment to create sophisticated middleware solution that talks to a
medical patient database distributed across multiple servers. Front-end developers could use familiar tools
siich as Delphi or Visual Basic to rapidly create and maintain the large and continually changing variety of
forms required by medical insurance companies.

1, Conseguences
Devefopment implications. Since the Windows-based front-end and Java middleware
communicate via COM, the Java developer must augment the Java program with source code that
implements COM-based interfaces, (Ed Note: See scenario #2 in appendix for complete technical details
of how this works.)

Impact on-veeirity-drabustnessfcross platform]. The Java middleware will function on any |

platform that supports both Java and COM. The middleware may execute on the client machine, oron a
server (the latter requires that both the client and server support DCOM).

Impact on security & robustness. While running, the Java middleware possesses all of Java's
security and robustness. However, communication between the Java Server and the Windows client does
not share Java's security and robustness lmproper communications between the client and server could
cause either or both components to crash [Again, any improperly written applet can crash. |

E\Onfine docs\BrudSOTX Rexporsivelacitivex Java misinfo.doclAISSUESWOE LI Igun L d cliva X2 ddac »
528/97224206 » 10:18 AMI2:4PAL v page 7

TXAG 0015740
CONFIDENTIAL

MS-CCPMDL 000000295493
CONFIDENTIAL

