tof 13

JAVA

4 What's New?

4 Docomentation
q Products & APIS
{ Applets,

¢ For Developers

o Java in the Real World
f Business & Licensing
o Support & Services

& Marketing

4 Employment

4 Java Store”

Try the Applet Mepy

DEFENDANT'S
EXHIBIT

| Lz

B e S I PP PR TR P R PR T TT ¥}

THE SOURCE FOR JaVA" TECHNOLOGY
jﬂVﬂ.Sun.CGm { Feedbact { Map | Searth

JAVAQOS™ A STANDALONE JAVAm
ENVIRONMENT

by Peter Madany
contributions by Susan Keohan, Douglas Kramer and Tom
Saulpaugh

Contents

Introduction

Java with a Host Operating System
Java without a Host Qperating System
- A Kernel for Java

- Java Virtual Machine

- Device Drivers

- Network Protocol Suite

~ Window and Graphics

HotJava®™ and HotJavaViews™ as the JavaQS8 Desktop Environmeni
Is JavaOSs an Operating System?

Performance

- Speed

~ Space
Advantages of JavaD8S

Target Svstems for JavaOSs
- Intranet Computers

- Internet Computers

- Embedded Devices
Availability

Summary

Introduction

JavaOS'™ is a new platform optimized to run Java'™ on a variety of
computing and consumer platforms. JavaOS provides a runtime
specifically tuned to run Java applications directly on hardware
platforms without requiring a host operating system. These Java
applications are highly interactive, dynamic, secure, and portable.

Today many platforims exist, among them Microsoft Windows,
Macintosh, O8/2, UNIX(r), Sun Solaris™, and NetWare(1).
Currently, software must be compiled, tested, and packaged
separately to run on each platform. In other words, the binary file for
an application that runs on one platform cannot run on another
platform, because the binary file is platform-specific.

The Java Platform is a new software platform for delivering and

7/13/98 11:35 AM

MS-PCA 1699235

Plaintiff's Exhibit
9112

Comes V. Microsoft

running highly interactive, dynamic, and secure applets and
applications on networked computer systems. The Java Platform sits
on top of existing platforms and executes byfecodes, which are not
specific to any physical machine, but are machine instructions for a
virtual machine. A program written in the Java Language cormpiles to
a pytecode file that can run wherever the Java Platform is present, on
any underlying operating sysiem. In other words, the same file can
Iun on any operating system that is mnning the Java Platform. This
portability is possible because at the core of the Java Platform is the
Java Virtual Machine.

A Java Language development environment includes both the
compile-time and runtime environments. as shown in Figure 1. The
Java Platform is represented by the runtime environment. The
developer writes Java Language source code (java files) and
compiles it to bytecodes (.class files). These bytecodes are
instructions for the Java Virtual Machine.

i Compile-time Envirghiment Runtime Environment
| {Java Platform)

Class Loader JavacClass

Bytecods 4 Libraries
erifier

v Ja
Java Just-In-Time .J‘va
H Virtuat
s Interpreter Compller i] Machine
Com piler

Runtime System

¥

Java
Bytecodes [Qperating System |
{class)
[Harcware]

Figure 1. Source code . compiled to bytecodes, which are executed at
runtime.

While each underlying platform has its own implementation of the
Java Virtual Machine, there is only one virtual machine specification.
Because of this, the Java Platform can provide a standard and uniform
programming interface to applets and applications on any hardware.
Therefore, the Java Platform is ideal for the Internet, where one
program should be capable of running on any computer in the world.
For more information about the features and architeeture of the Java
Platform and development environment, refer to the Developer's

Comner at hitp://java.sun.com.

The Java API provides the specification of how the programmier
writing an application or applet accesses the facilities of some object.
The Java Development Kit {JDK) defines the Java APl which

2of 13 7/13/98 11:36 AM

—MS-PCA 1699236

Jof13

supports applications such as browsers and b'rowser applets. The Java
API is the same for all Java runtimes, including JavaOS, Microsoft
Windows, UNIX, and Macintosh implementations.

JavaCOS$ implements the Java Platform for running Java powered
applets andp applications. As such, it implements the Java Virtual
Machine and the underlying functionality for windowing, networking
and file system, without requiring the support of a host operating
System,

JavaOS is built from a combination of native code (instruction set and
hardware platform specific) and Java code which is platform
independent. JavaOS defines a platform as a CPU, physical memory,
and any attached devices, buses, and slots. The platform independent
component of the operating system is called the JavaQS rumtime. The
platform dependent portion of the operating system is referred to as
the JavaOS kernel.

The JavaQS runtime is designed to mn on a very hardware-limited
platform. For example, the runtime doesn't require 2 Memory
Management Unit (MMU) to map virtual addresses to physical
memory addresses, nor does it require memory protection. The
runtime lets the underlying kernel choose whether to use an MMU or
enforce memory protection. For example, the JavaOS kemel bundled
in JavaOS (version I} uses an MMU to make several disjoint physical
memory regions appear contiguous to the runtime; future kemels may
manage the MMU in a more pro-active fashion.

Since the benefits of the Java Platform fit many of the goals of
building simple, intelligent, and dynamic network devices, the
challenge is providing the Java Platform for devices with limited
hardware and software resources. One of the best ways of reducing a
device's hardware requirements is to remove the overhead caused by
requiring a general purpose operating system. JavaOS provides just
enough operating system features to support the Java Platform, thus
allowing developers to provide the benefits of the Java Platform on
devices with limited hardware and software resources. By removing
the dependence on a host operating system, developers can create
code that supports many different kinds of devices without many of
the constraints imposed by traditional operating systems.

To this end, JavaOS is constructed using a layered architecture. Each
layer is designed to be maintained in an independent fashion. This
architecture serves two purposes: product customization and a parallel
operating system release model.

JavaQ$ based product customization is the assembling of JavaQS§
layers for the constraints and purpose of the product. For example, a
smart phone running JavaOS might require a realtime kernel, the Java
Virtual Machine, a minimum graphics capability, and some
communication protocols. A network computer requires a more full
featured kerne! without the realtime constraints, but with the Java
Virtual Machine, Abstract Window Toolkit (complete graphics
libraries), and all the rest of the Java Developers Kit (JDK)
Application Programming Interfaces (APlIs), including the HotJavaim
browser. This paper first describes how the Java Platform works with
a host operating system, then explains how the Java Platform works

713/98 11:36 AM

o - MS-PCA 1699237

40f13

T e N Lo EUNE B F V(L - TR)]

with Java(QSs.

-

Java with a Host Operating System 4

When the Java Platform is used with a host operating system, the Java
Virtual Machine and foundation classes can either be imbedded within
the operating system or within an application, such as a Web browser.
To support the Java Platform, the host operating system provides
some support for the Java Platform. Each of the major features of the
Java Platform directly or indirectly places requirements on a haost
operating system. Many of the language and utility classes agsume
operating system services are available. Figure 2 illustrates the
software architecture used when running the Java Platform on a host
operating systen. In Figure 2, everything above the Java API is
platform independent. .

It doesn't matter what the underlying operating system or hardware is,
the Java API is the same on all platforms. The Java APl is
implemented by several classes written in the Java programming
language, including the language and utility classes, the Abstract
Window Toolkit, and the network and 1/C classes, The Java runtime,
which includes the interpreter and garbage collector, is largely written
in platform-independent C code. When the runtime is ported to a new

latform, some specific platform-dependent code must be ported; this
15 labeled Java runtime (platform dependent porting interface) in

Figure 2).

HotJavaand Java Applications
Java APl

Py

Java Code

Figure 2. Java on a Host Operating System

The host operating systern must provide the following:

T/13/98 11:36 AM

MS-PCA 1699238

Jof 13

% Muhithreading support for the Java runtime; at least
some primitive support for context-switching, If the host
system provides better support for threads, that support
may be used,

% Memory allocation, Although the Java nuntime
rmanages its own heap and includes garbage collectjon, it
still needs a mechanism for allocating the memory that it
will manage.

& Windowing and graphics suppott for the Abstract
Window Toolkit which provides an abstract graphical
user interfaces.

% Standard network protocols to support the Java
nerworking classes.

When porting the Java Platform, the developer must do the following:

2 Map the Abstract Window Toolkit (AWT) to the
window and graphics subsystem provided by the host
system.

% Map the networking classes to the native networking
code on the system, which, for example, could have
different system calls for operations on sockets.

¥ Map the file-related 1/0 classes to the host file system,
which might use a different syntax for filenames.

© Port the platform-dependent part of the Java Virtual
Machine to the particular system calls for memory
allocation and thread management.

Java without a Host Operating System 4

JavaOS provides a standalone Java environment. In other words,
applications developed for the Java Platform using JavaOS8 can run on
devices without depending on the support or existence of a host
operating system. Also, applications written to run on machine
without a host operating system may be run on machines that have a
host operating system. To support the Java Platform. JavaQS:

& Supports the Java Virtual Machine using a kerne] for
Java,

& Supports AWT and the networking and file-related
17O classes,

% Provides the drivers for controlling a display, network
interface, mouse, and keyboard.

& Supports the full Java APIL.

Figure 3 shows the software architecture used when running the Java
Platform without a host operating system. As in Figure 2, prograrns
above the Java API are platform-independent Java applications and
applets.

7/13/98 11:36 AM

MS-PCA 1699239

e e

[T LI Y L

r

s el S ray L) CALYTOTITIE0L

HotJava, HotJavaViews and JavaApplications

Java —

Java APl

JavaD5s —

60f13

JavaCode C and AssemblerCode

Figure 3. Java Platform running on JavaOS
A Kernel for Java

Within JavaQS$, the Java runtime executes not only user-level
applications, but also the system-level windows, graphics,
networking, and driver code. The lowest laver of code handles the
tasks often found in micro- or nano-kernels, The keme! for Java
contains the low-level functions required by the Java Virtual Machine.
This required functionality falls into the following categories:

2 Booting

2 Exceptions

2 Threads

2 Memory Management

& Monitors

& File System

& Timing

2 Native Code Library Management
i Interrupts

& DMA

hittp:/fwww javasoft.comyproducts/javaos/javacs. white hom

T13/98 11:36 AM

MS-PCA 1699240

B T T i

r

7of13

e ek v b LY 1) OUEENT hetp:/iwww javasoft.com/products/javaos/javaos. white.hur.

2 Debugging
& Miscellaneous Platform Control

Boot systems for network, ROM, RAM, CD-ROM, floppy, and hard
disks are all possible. While the bootstrap code is running, it allocates
several memory regions, including one for the Java heap, and others
for various [/O device registers and DMA regions. The bootstrap also
handles mapping hardware devices that it has detected to their
corresponding device drivers.

The main purpose of the trap and interrupt handling code is to service
traps and interrupts and make the information accessible to the
appropriate Java device driver, :

The thread support code enables the Java Virtual Machine to switch
contexts between the dozens of threads typically running in the
system. Because of the protection provided by the Java programming
language, JavaOS and all applications can run in a single address
space.SThjs simplifies and optimizes the context-switching code in
JavaOSs.

JavaOS does not require a Memory Management Unit, but it can use
an MMU to make several disjoint ranges of physical memory appear
contiguous, which simplifies memory allocation. The Java
programming language eliminates the direct manipulation of memory
by encapsulating all access into objects, classes, and automatic free
memory collection. Eliminating pointers makes Java a more robust
programming fanguage than C and dramatically reduces the number of
memory-related bugs.

JavaOS$ presents a portable, abstract memory model. The memory
model is built upon the notion of addressing. Addressing is the
process of identifying a memory location. The most fundamentsl unit
of addressing in JavaOS is the physical address. A physical address
identifies a unique memory location. A physical address is not
ransiated by the MMU; rather it is a raw memory location,
identifying what may be ROM, RAM, or /O memory.

The JavaOS virtual address space is created by the JavaQS kernel
layer. Note that the term virtual doesn't necessarily imply paging.
Instead, the term virtual means that this address space used by all
saftware and may not resemble in any way the physical address space.
JavaOS does not assume a one to one correspondence between the
physical and virtual address spaces. The use of an MMU to enhance
the support of the virtual address space is not assumed either. Rather,
MMU usage and page management is seen as a kernel implementation
issue.

Unlike many operating systems in use today, JavaOS doesn't operate
under the assumption of multiple virtual address spaces. Instead,
JavaOS operates in a single virtual address space.

Java Virtual Machine

Within Java compatible systems like JavaOS8, the Java Virtual
Machine is obviously used to interpret Java bytecodes, but it is also

7/13/98 11:36 AM

MS-PCA 1699241

f e e Syl) Lk AL UGIET ntpziiwww javasoft, com/products/javaos/javaos. white.htm

used as infrastructure for much of the rest of JavaQS$. It exccutes the
bytecodes in all classes within the system, handles exceptions,
manages almost all of the RAM in the computer, and handles the
simultanecus execution of multiple threads.

The implementation of the Java Virtual Machine that we use in
JavaOs is very close to the standard one provided with Java
Developer Kit, but we have muned the memory allocation mechanisms,
and added the reclamation of storage used by classes that are no
longer needed by any objects in the system.

Device Drivers

All device drivers in JavaOS are written in the Java programming
language. This is important for portability,

There are ¢ertain things almost every driver needs to do that cannot be
done in pure Java code; these have been abstracted into two small
support classes written in C. The Memory class enables drivers to
access and modify specific bytes and words of storage. The Interrupt
class handles interrupt dispatching. The methods of these classes are
rot made available to any Java applications.

Currently, several Java drivers exist for several different classes of
devices and we are developing more that support both SPARC! and
X 86 hardware. We are also in the process of defining a Java interface
to enable third parties to build downloadable drivers for any device.

Network Protocol Suite

JavaOSs includes a large suite of network protacols, all written in the
Java programming language. These protocols include the basic
transport and routing mechanisms specified by the TCP, UDP, IP and
ICMP standards. JavaOS uses both DNS and NIS for looking up
{ms_tnames and supplying user names and passwords used during
ogin.

JavaO$§ supports both Reverse ARP and DHCP for discovering the
network address of a device. This enables the JavaO8 machines to be
installed with little or no per-machine administration.

A machine running JavaOS can access files as a client of 2 Network
File System server and can be managed using the Simple Network
Management Protocel. JavaOS machines can get the time of day from
a network server, which also simplifies installation and
administration.

Window and Graphics

Besides the network protocol suite, the largest piece of operating
system functionality supplied by JavaOS is the windowing and
graphics subsystem.

JavaOS uses the Tiny AWT library to provide Java based
implementations of widgets such as buttons, menus, and scrollbars,
Tiny AWT is not called "Tiny" because it is smaller than AWT, but
because it enables AWT to place far fewer requirements on the

8of 13 7/13/98 11:36 AM

MS-PCA 1699242

9of 13

L W w W, | YESOTL COTY Pronucis/ & vaos Javaos. white fitm

underlying window system.

We have deveioped a simple and memory-efficient window system in
Java. We supply a system to manage the display of overlapping
windows, a graphics package to draw and fill lines, arcs and polygons.
and to render bitmapped fonts, and support for hardware video
accelerators. The lowest levels of the graphics code need direct access
to the frame buffer memory locations; therefore, they are written as
native methods.

HotJava and HotJava Views as the JavaQS Desktop
Environment #

HotJava™ is the first desktop user interface written in the Java
programming language. As such, it can run on JavaOS. When
combined with Hotlava or HotJava Views'™, JavaQS can function as a
complete multitasking, graphical operating environment. HotJava can
serve as the manager of the desktop metaphor, supporting multiple
windows, each of which is capable of browsing HTML pages and
running one or more Java applets. HotJava's customizability and
extensibility make it an idealp framework for JavaOS applications.

JavaOS can also run other main programs besides HotJava and
HotJavaViews,

Is Java©OS an Operating System?

Is JavaOS really an operating system? Whether it is or isn't depends
on one's perspective, JavaOS differs from conventional operating
systems 1n several ways in that it does not;

= Need a file system.

& Need virtual memory.

% Need separate address spaces.

% Support more than one programming language.
& Hawve its own set of system calls.

JavaOS also resembles an operating system in several ways in that it:

& s bootable.

% Supports a password-protected login feature.
% Safely runs several applets at a time.

% Includes several device drivers.

¥ Communicates using many standard network
protocols,

% Has its own window system.
Has an APIL

% Will run the thousands of applets and applications that
have been written.

7/13/98 11:36 AM

T MS-PCA 1699243

R S e et sd LML LU WO W Y S L LUITY PIOULC LS |4 v aus JaYa0s . white hitmi

Performance #

This section discusses some of the performance advantages you will
see when you write applications for the Java Platform running on
JavaOS.

Speed

Currently JavaQOS has had minimal performance tuning, has not used a
"Just-In-Time" compiler to translate byte-codes into machine code,
and makes minimal use of native methods. Therefore, one might
expect JavaOS to perform poorly, but our measurements and
benchmarks indicate that performance is not only better than expected
but also better in some areas than some more matire systems written
in C or C++.

The TCP/IP throughput on Java(Ss is already double our original goal
and is more than adequate for Web browsing. We have also run
Pendragon Software’s CaffeineMark benchmark on several systems to
compare their performance when executing Java applets, and we have
observed very encouraging results. The main reason for these good
results is that JavaOS jettisons the many layers of software
architecture that other systems have built up to make programming in
languages like C safer and less platform-dependent. Ironically, while
those layers do hurt performance, they do not come close to providing
the safety and platform independence of Java!

Space

How much memory is needed to support JavaO3? One could build a
complete system with a total of 4MB of ROM and 4MB of RAM.

In the ROM would be all the code for JavaOS itself, including the
kernel code, drivers, Java Virtual Machine and standard classes, plus
the JavaOQS windows, graphics, and networking components, plus the
code for Hotlava. The ROM could alse include approximately 1MB
of bitmaps for fonts with all the combinations of various types like
serif, sans-serif, and typewriter, several point sizes, and various styles
such as bold and italic.

Assuming that the ROM could be executed in place, then the system
could use two and one-half MB of RAM for the dynamic
requirements of JavaOS and HotJava and still have about one and
one-half MB of RAM for downioaded HTML pages, applets, and
images. Systems built using JavaQSs that do not require windewing
and HotJava code could run in less than half the space.

Advantages of JavaOS >

There are several advantages of using JavaOS to provide the Java
Plattorm directly on hardware, including:

£ JavaOS achieves the goal of eliminating the overhead
of a host operating system. Because JavaOS contains no

10of 13 7/13/98 11:36 AM

MS-PCA 1689244

11o0f13

e e pLUMLILLY 4 Y AU [AVEOS, WhITE, htm

extraneous features found in other operating systems, it
allows smaller and simpler devices to be built that
execute Java programs more efficiently than other
systems.

% JavaOS may be stored on ROM, enabling simple,
low-cost systems that boot quickly.

& JavaOS is written in Java. thus, new components can
be quickly developed because Java code is easier to
debug, is inherently portable, and is dynamicaily
extenstble.

& JavaOS enables systems that are as easy to install
and maintain as terminals, yet are nearly as powerful as
traditional desktop machines. Perhaps the most expensive
part of owning a computer is the cost of configuring and
maintaining one. JavaOS can dramatically reduce that
cost compared with a typical personal computer.

Target Systems for JavaOS #

JavaOS is ideal for several types of devices, including intranet
computers, Internet computers, and embedded devices. As the name
implies, JavaSoft develops software not hardware, and it supplies
JavaOS to hardware companies to enable them to build intelligent and
dynamic hardware devices.

Intranet Computers

Intranet computers are computers connected to an enterprise’s network
infrastructure. Most companies can deliver Ethernet connections to
each desktop machine, which provides plenty of performance for
transferring Java classes and other data. Many companies also have
higher speed backbone networks.

Servers are another key element of enterprise networks. They support
centralized administration of intranet computers. For example, if a
server implements the DHCP protocol, which supports dynamic
allocation of IP addresses, no administration is required for installing
an additional intranet computer.

The Java Platform is ideal for developing and deploying MIS
applications, since applications can be mutomatically downloaded over
a network and since it is so easy to write network-aware applications
in the Java programming language.

Internet Computers

The first Internet computers will have to work well with the relatively
limited bandwidth provided by today’s high-speed modems and ISDN.
When cable modems become more prevalent, then home computers
will have the network bandwidth common in today's local area
networks. Since most people don't have sophisticated network servers
at home, Internet Service Providers will have to provide the necessary
infrastructure so that using an Intranet computer is as easy as using an
appliance. For example, you just plug the computer in to an outlet and
a phone jack, turn it on, and you are automatically on the Internet and

7/13/98 11:36 AM

MS-PCA 1699245

e wom vy AL AR Y 1L GHLIIETL wnpwww_javasolt.com/products/javaosfjavaos. white htm:

ready to go surf the World Wide Web.
Embedded Devices

What if a device has only 1MB or 2MB of RAM and 1MB or 2MB of
ROM, and possibly no graphical display, yet you want it to be able to
load and run Java applications? JavaOS can be tailored to fit particular
devices like set-top boxes, PDAs, and electronic devices without any
graphical display. Note this does not mean that one could subset the
language itself or remove features from the language or utility classes.
But, for example, if there is no display, one could remove not only
AWT for that device, but also remove the window and graphics code
from JavaOSs.

Similarly if the device did not have a need for certain network
protocols, they could be eliminated. In order to meet some embedded
system requirements, we still have to tune the Java Virtual Machine
and garbage collection to support some soft real-time capabilities.

We are working with software tool venders to build 2 rich software
development environment for JavaOS§, including a remote debugging
capabiEty. The memory footprint for JavaO$ in its smallest possible
configuration will be about 128K of RAM and 512K of ROM. Note
that this is the memory required for JavaOS itself; additional memeory
would be needed for applications.

Availability ++

JavaO8 currently runs on several platform. One set of platforms is
based on SPARC microprocessors. Another set of platforms is based
on microprocessors compatible with Intel's x86 instruction set.
JavaQS has been ported to systems based on other microprocessor
instruction sets. The current version of JavaOS is based on the 1.0 !
version of the JDK. Some of the key features we will be adding in ;
future versions of JavaOS include: .

% New Java Platform API's as they are added to the
future versions of the JDK.

£t The device driver interface that we are currently
specifying.

£ Enhanced window and graphics components with
features like scalable fonts.

An enhanced network protocol suite with PPP-related
features.

—

Summary #

In summary, JavaQ$ is a new software platform that enables Java
applications to run directly on hardware without requiring a host
operating system.

JavaOs includes the Java Virtual Machine, the standard packages of

classes, and just enough OS code to support them. The OS code
includes low-level code written in C or assembly language, plus

120f13 7/13/98 11:36 AM

—MS-PCA 1699246

aup W L [AYESOTE COMY products/) avaos/javacs. white hur

device driver, networking, windowing, and graphics-rendering code
writien largely in the Java programming language.

The main advantage of JavaOS$ is that by eliminating the overhead
and complexity of host operating systems, it enables new classes of

' simple, intelligent, and dynamic network devices that will be lower
cost. JavaOS is targeted at systems such as intranet terminals for
enterprise desktops, consumer Internet computers suitable for Web
surfing, and embedded devices where hardware resSOurces are even
more reswricted.

This page was updated: 13-Oct-97

FEEDBACK | SUPPORT & SERVICES | MAP

i | l Search I
For inf: tion, call:
Oor information, ca o&ln

{828) 843-5282 (North America)

(512) 434-1591 {Other locations) All R]%:gaig::fefii-gms Slmicpﬁvact;msﬁll]&?
130f13 7/13/98 11:36 AM

TMS-PCA 1699247

